Cargando…
How does urbanization affect the reproductive characteristics and ecological affinities of street plant communities?
Anthropogenic activities in urban ecosystems induce a myriad of environmental changes compared with adjacent rural areas. These environmental changes can be seen as series of abiotic and biotic selection filters affecting the distribution of plant species. What are the attributes of plant species th...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6745663/ https://www.ncbi.nlm.nih.gov/pubmed/31534708 http://dx.doi.org/10.1002/ece3.5539 |
_version_ | 1783451578897793024 |
---|---|
author | Desaegher, James Nadot, Sophie Machon, Nathalie Colas, Bruno |
author_facet | Desaegher, James Nadot, Sophie Machon, Nathalie Colas, Bruno |
author_sort | Desaegher, James |
collection | PubMed |
description | Anthropogenic activities in urban ecosystems induce a myriad of environmental changes compared with adjacent rural areas. These environmental changes can be seen as series of abiotic and biotic selection filters affecting the distribution of plant species. What are the attributes of plant species that compose urban communities, compared with rural communities, as related to their ecological affinities (e.g., to temperature, humidity), and reproductive traits (e.g., entomophily, autogamy, floral morphology)? Using a floristic dataset from a citizen science project recording plant species growing spontaneously in the streets, we analyzed the distribution of species according to their ecological requirements and reproductive traits along an urbanization gradient in the Parisian region. We developed an original floral and pollinator typology composed of five floral and four pollinator morphotypes. The proportion of impervious areas, used as a proxy of urbanization, was measured at different spatial scales, to reveal at which spatial scales urbanization is selecting plant traits. We found significant differences in plant communities along the urbanization gradient. As expected with the warmer and drier conditions of urban areas, species with higher affinities to higher temperature, light and nutrient soil content, and lower atmospheric moisture were over‐represented in urban plant communities. Interestingly, all of the significant changes in plant abiotical affinities were the most pronounced at the largest scale of analysis (1,000 m buffer radius), probably because the specific urban conditions are more pronounced when they occur on a large surface. The proportion of autogamous, self‐compatible, and nonentomophilous species was significantly higher in urban plant communities, strongly suggesting a lower abundance or efficiency of the pollinating fauna in urban environments. Last, among insect‐pollinated species, those with relatively long and narrow tubular corollas were disadvantaged in urban areas, possibly resulting from a reduction in pollinator abundance particularly affecting specialized plant–pollinator interactions. |
format | Online Article Text |
id | pubmed-6745663 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-67456632019-09-18 How does urbanization affect the reproductive characteristics and ecological affinities of street plant communities? Desaegher, James Nadot, Sophie Machon, Nathalie Colas, Bruno Ecol Evol Original Research Anthropogenic activities in urban ecosystems induce a myriad of environmental changes compared with adjacent rural areas. These environmental changes can be seen as series of abiotic and biotic selection filters affecting the distribution of plant species. What are the attributes of plant species that compose urban communities, compared with rural communities, as related to their ecological affinities (e.g., to temperature, humidity), and reproductive traits (e.g., entomophily, autogamy, floral morphology)? Using a floristic dataset from a citizen science project recording plant species growing spontaneously in the streets, we analyzed the distribution of species according to their ecological requirements and reproductive traits along an urbanization gradient in the Parisian region. We developed an original floral and pollinator typology composed of five floral and four pollinator morphotypes. The proportion of impervious areas, used as a proxy of urbanization, was measured at different spatial scales, to reveal at which spatial scales urbanization is selecting plant traits. We found significant differences in plant communities along the urbanization gradient. As expected with the warmer and drier conditions of urban areas, species with higher affinities to higher temperature, light and nutrient soil content, and lower atmospheric moisture were over‐represented in urban plant communities. Interestingly, all of the significant changes in plant abiotical affinities were the most pronounced at the largest scale of analysis (1,000 m buffer radius), probably because the specific urban conditions are more pronounced when they occur on a large surface. The proportion of autogamous, self‐compatible, and nonentomophilous species was significantly higher in urban plant communities, strongly suggesting a lower abundance or efficiency of the pollinating fauna in urban environments. Last, among insect‐pollinated species, those with relatively long and narrow tubular corollas were disadvantaged in urban areas, possibly resulting from a reduction in pollinator abundance particularly affecting specialized plant–pollinator interactions. John Wiley and Sons Inc. 2019-08-13 /pmc/articles/PMC6745663/ /pubmed/31534708 http://dx.doi.org/10.1002/ece3.5539 Text en © 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Desaegher, James Nadot, Sophie Machon, Nathalie Colas, Bruno How does urbanization affect the reproductive characteristics and ecological affinities of street plant communities? |
title | How does urbanization affect the reproductive characteristics and ecological affinities of street plant communities? |
title_full | How does urbanization affect the reproductive characteristics and ecological affinities of street plant communities? |
title_fullStr | How does urbanization affect the reproductive characteristics and ecological affinities of street plant communities? |
title_full_unstemmed | How does urbanization affect the reproductive characteristics and ecological affinities of street plant communities? |
title_short | How does urbanization affect the reproductive characteristics and ecological affinities of street plant communities? |
title_sort | how does urbanization affect the reproductive characteristics and ecological affinities of street plant communities? |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6745663/ https://www.ncbi.nlm.nih.gov/pubmed/31534708 http://dx.doi.org/10.1002/ece3.5539 |
work_keys_str_mv | AT desaegherjames howdoesurbanizationaffectthereproductivecharacteristicsandecologicalaffinitiesofstreetplantcommunities AT nadotsophie howdoesurbanizationaffectthereproductivecharacteristicsandecologicalaffinitiesofstreetplantcommunities AT machonnathalie howdoesurbanizationaffectthereproductivecharacteristicsandecologicalaffinitiesofstreetplantcommunities AT colasbruno howdoesurbanizationaffectthereproductivecharacteristicsandecologicalaffinitiesofstreetplantcommunities |