Cargando…

Pooling as a strategy for the timely diagnosis of soil-transmitted helminths in stool: value and reproducibility

BACKGROUND: The strategy of pooling stool specimens has been extensively used in the field of parasitology in order to facilitate the screening of large numbers of samples whilst minimizing the prohibitive cost of single sample analysis. The aim of this study was to develop a standardized reproducib...

Descripción completa

Detalles Bibliográficos
Autores principales: Papaiakovou, Marina, Wright, James, Pilotte, Nils, Chooneea, Darren, Schär, Fabian, Truscott, James E., Dunn, Julia C., Gardiner, Iain, Walson, Judd L., Williams, Steven A., Littlewood, D. Timothy J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6745781/
https://www.ncbi.nlm.nih.gov/pubmed/31522691
http://dx.doi.org/10.1186/s13071-019-3693-3
Descripción
Sumario:BACKGROUND: The strategy of pooling stool specimens has been extensively used in the field of parasitology in order to facilitate the screening of large numbers of samples whilst minimizing the prohibitive cost of single sample analysis. The aim of this study was to develop a standardized reproducible pooling protocol for stool samples, validated between two different laboratories, without jeopardizing the sensitivity of the quantitative polymerase chain reaction (qPCR) assays employed for the detection of soil-transmitted helminths (STHs). Two distinct experimental phases were recruited. First, the sensitivity and specificity of the established protocol was assessed by real-time PCR for each one of the STHs. Secondly, agreement and reproducibility of the protocol between the two different laboratories were tested. The need for multiple stool sampling to avoid false negative results was also assessed. Finally, a cost exercise was conducted which included labour cost in low- and high-wage settings, consumable cost, prevalence of a single STH species, and a simple distribution pattern of the positive samples in pools to estimate time and money savings suggested by the strategy. RESULTS: The sensitivity of the pooling method was variable among the STH species but consistent between the two laboratories. Estimates of specificity indicate a ‘pooling approach’ can yield a low frequency of ‘missed’ infections. There were no significant differences regarding the execution of the protocol and the subsequent STH detection between the two laboratories, which suggests in most cases the protocol is reproducible by adequately trained staff. Finally, given the high degree of agreement, there appears to be little or no need for multiple sampling of either individuals or pools. CONCLUSIONS: Our results suggest that the pooling protocol developed herein is a robust and efficient strategy for the detection of STHs in ‘pools-of-five’. There is notable complexity of the pool preparation to ensure even distribution of helminth DNA throughout. Therefore, at a given setting, cost of labour among other logistical and epidemiological factors, is the more concerning and determining factor when choosing pooling strategies, rather than losing sensitivity and/or specificity of the molecular assay or the method.