Cargando…
Innovation in Flow Cytometry Analysis: A New Paradigm Delineating Normal or Diseased Bone Marrow Subsets Through Machine Learning
Autores principales: | Lacombe, Francis, Dupont, Benoît, Lechevalier, Nicolas, Vial, Jean Philippe, Béné, Marie C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer Health
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6746040/ https://www.ncbi.nlm.nih.gov/pubmed/31723814 http://dx.doi.org/10.1097/HS9.0000000000000173 |
Ejemplares similares
-
Definition of Erythroid Differentiation Subsets in Normal Human Bone Marrow Using FlowSOM Unsupervised Cluster Analysis of Flow Cytometry Data
por: Béné, Marie C., et al.
Publicado: (2020) -
Unsupervised Flow Cytometry Analysis Allows for an Accurate Identification of Minimal Residual Disease Assessment in Acute Myeloid Leukemia
por: Vial, Jean Philippe, et al.
Publicado: (2021) -
Unsupervised cluster analysis and subset characterization of abnormal erythropoiesis using the bioinformatic Flow‐Self Organizing Maps algorithm
por: Porwit, Anna, et al.
Publicado: (2022) -
Bone Marrow Involvement in Melanoma. Potentials for Detection of Disseminated Tumor Cells and Characterization of Their Subsets by Flow Cytometry
por: Chernysheva, Olga, et al.
Publicado: (2019) -
Characterization of Human Monocyte Subsets by Whole Blood Flow Cytometry Analysis
por: Marimuthu, Rekha, et al.
Publicado: (2018)