Cargando…
EnContact: predicting enhancer-enhancer contacts using sequence-based deep learning model
Chromatin contacts between regulatory elements are of crucial importance for the interpretation of transcriptional regulation and the understanding of disease mechanisms. However, existing computational methods mainly focus on the prediction of interactions between enhancers and promoters, leaving e...
Autores principales: | Gan, Mingxin, Li, Wenran, Jiang, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6746221/ https://www.ncbi.nlm.nih.gov/pubmed/31565573 http://dx.doi.org/10.7717/peerj.7657 |
Ejemplares similares
-
ContactPFP: Protein Function Prediction Using Predicted Contact Information
por: Kagaya, Yuki, et al.
Publicado: (2022) -
DeepTACT: predicting 3D chromatin contacts via bootstrapping deep learning
por: Li, Wenran, et al.
Publicado: (2019) -
The evolution of logic circuits for the purpose of protein contact map prediction
por: Chapman, Samuel D., et al.
Publicado: (2017) -
A sequence-based, deep learning model accurately predicts RNA splicing branchpoints
por: Paggi, Joseph M., et al.
Publicado: (2018) -
PhosVarDeep: deep-learning based prediction of phospho-variants using sequence information
por: Liu, Xia, et al.
Publicado: (2022)