Cargando…

Graph convolutional network approach applied to predict hourly bike-sharing demands considering spatial, temporal, and global effects

Solving the supply–demand imbalance is the most crucial issue for stable implementation of a public bike-sharing system. This gap can be reduced by increasing the accuracy of demand prediction by considering spatial and temporal properties of bike demand. However, only a few attempts have been made...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Tae San, Lee, Won Kyung, Sohn, So Young
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6746382/
https://www.ncbi.nlm.nih.gov/pubmed/31525227
http://dx.doi.org/10.1371/journal.pone.0220782
Descripción
Sumario:Solving the supply–demand imbalance is the most crucial issue for stable implementation of a public bike-sharing system. This gap can be reduced by increasing the accuracy of demand prediction by considering spatial and temporal properties of bike demand. However, only a few attempts have been made to account for both features simultaneously. Therefore, we propose a prediction framework based on graph convolutional networks. Our framework reflects not only spatial dependencies among stations, but also various temporal patterns over different periods. Additionally, we consider the influence of global variables, such as weather and weekday/weekend to reflect non-station-level changes. We compare our framework to other baseline models using the data from Seoul’s bike-sharing system. Results show that our approach has better performance than existing prediction models.