Cargando…
A rule-based method for predicting the electrical activation of the heart with cardiac resynchronization therapy from non-invasive clinical data
BACKGROUND: Cardiac Resynchronization Therapy (CRT) is one of the few effective treatments for heart failure patients with ventricular dyssynchrony. The pacing location of the left ventricle is indicated as a determinant of CRT outcome. OBJECTIVE: Patient specific computational models allow the acti...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6746621/ https://www.ncbi.nlm.nih.gov/pubmed/31326854 http://dx.doi.org/10.1016/j.media.2019.06.017 |
_version_ | 1783451714980937728 |
---|---|
author | Lee, A.W.C. Nguyen, U.C. Razeghi, O. Gould, J. Sidhu, B.S. Sieniewicz, B. Behar, J. Mafi-Rad, M. Plank, G. Prinzen, F.W. Rinaldi, C.A. Vernooy, K. Niederer, S. |
author_facet | Lee, A.W.C. Nguyen, U.C. Razeghi, O. Gould, J. Sidhu, B.S. Sieniewicz, B. Behar, J. Mafi-Rad, M. Plank, G. Prinzen, F.W. Rinaldi, C.A. Vernooy, K. Niederer, S. |
author_sort | Lee, A.W.C. |
collection | PubMed |
description | BACKGROUND: Cardiac Resynchronization Therapy (CRT) is one of the few effective treatments for heart failure patients with ventricular dyssynchrony. The pacing location of the left ventricle is indicated as a determinant of CRT outcome. OBJECTIVE: Patient specific computational models allow the activation pattern following CRT implant to be predicted and this may be used to optimize CRT lead placement. METHODS: In this study, the effects of heterogeneous cardiac substrate (scar, fast endocardial conduction, slow septal conduction, functional block) on accurately predicting the electrical activation of the LV epicardium were tested to determine the minimal detail required to create a rule based model of cardiac electrophysiology. Non-invasive clinical data (CT or CMR images and 12 lead ECG) from eighteen patients from two centers were used to investigate the models. RESULTS: Validation with invasive electro-anatomical mapping data identified that computer models with fast endocardial conduction were able to predict the electrical activation with a mean distance errors of 9.2 ± 0.5 mm (CMR data) or (CT data) 7.5 ± 0.7 mm. CONCLUSION: This study identified a simple rule-based fast endocardial conduction model, built using non-invasive clinical data that can be used to rapidly and robustly predict the electrical activation of the heart. Pre-procedural prediction of the latest electrically activating region to identify the optimal LV pacing site could potentially be a useful clinical planning tool for CRT procedures. |
format | Online Article Text |
id | pubmed-6746621 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
record_format | MEDLINE/PubMed |
spelling | pubmed-67466212019-09-16 A rule-based method for predicting the electrical activation of the heart with cardiac resynchronization therapy from non-invasive clinical data Lee, A.W.C. Nguyen, U.C. Razeghi, O. Gould, J. Sidhu, B.S. Sieniewicz, B. Behar, J. Mafi-Rad, M. Plank, G. Prinzen, F.W. Rinaldi, C.A. Vernooy, K. Niederer, S. Med Image Anal Article BACKGROUND: Cardiac Resynchronization Therapy (CRT) is one of the few effective treatments for heart failure patients with ventricular dyssynchrony. The pacing location of the left ventricle is indicated as a determinant of CRT outcome. OBJECTIVE: Patient specific computational models allow the activation pattern following CRT implant to be predicted and this may be used to optimize CRT lead placement. METHODS: In this study, the effects of heterogeneous cardiac substrate (scar, fast endocardial conduction, slow septal conduction, functional block) on accurately predicting the electrical activation of the LV epicardium were tested to determine the minimal detail required to create a rule based model of cardiac electrophysiology. Non-invasive clinical data (CT or CMR images and 12 lead ECG) from eighteen patients from two centers were used to investigate the models. RESULTS: Validation with invasive electro-anatomical mapping data identified that computer models with fast endocardial conduction were able to predict the electrical activation with a mean distance errors of 9.2 ± 0.5 mm (CMR data) or (CT data) 7.5 ± 0.7 mm. CONCLUSION: This study identified a simple rule-based fast endocardial conduction model, built using non-invasive clinical data that can be used to rapidly and robustly predict the electrical activation of the heart. Pre-procedural prediction of the latest electrically activating region to identify the optimal LV pacing site could potentially be a useful clinical planning tool for CRT procedures. 2019-07-05 2019-07-05 /pmc/articles/PMC6746621/ /pubmed/31326854 http://dx.doi.org/10.1016/j.media.2019.06.017 Text en http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/) |
spellingShingle | Article Lee, A.W.C. Nguyen, U.C. Razeghi, O. Gould, J. Sidhu, B.S. Sieniewicz, B. Behar, J. Mafi-Rad, M. Plank, G. Prinzen, F.W. Rinaldi, C.A. Vernooy, K. Niederer, S. A rule-based method for predicting the electrical activation of the heart with cardiac resynchronization therapy from non-invasive clinical data |
title | A rule-based method for predicting the electrical activation of the heart with cardiac resynchronization therapy from non-invasive clinical data |
title_full | A rule-based method for predicting the electrical activation of the heart with cardiac resynchronization therapy from non-invasive clinical data |
title_fullStr | A rule-based method for predicting the electrical activation of the heart with cardiac resynchronization therapy from non-invasive clinical data |
title_full_unstemmed | A rule-based method for predicting the electrical activation of the heart with cardiac resynchronization therapy from non-invasive clinical data |
title_short | A rule-based method for predicting the electrical activation of the heart with cardiac resynchronization therapy from non-invasive clinical data |
title_sort | rule-based method for predicting the electrical activation of the heart with cardiac resynchronization therapy from non-invasive clinical data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6746621/ https://www.ncbi.nlm.nih.gov/pubmed/31326854 http://dx.doi.org/10.1016/j.media.2019.06.017 |
work_keys_str_mv | AT leeawc arulebasedmethodforpredictingtheelectricalactivationoftheheartwithcardiacresynchronizationtherapyfromnoninvasiveclinicaldata AT nguyenuc arulebasedmethodforpredictingtheelectricalactivationoftheheartwithcardiacresynchronizationtherapyfromnoninvasiveclinicaldata AT razeghio arulebasedmethodforpredictingtheelectricalactivationoftheheartwithcardiacresynchronizationtherapyfromnoninvasiveclinicaldata AT gouldj arulebasedmethodforpredictingtheelectricalactivationoftheheartwithcardiacresynchronizationtherapyfromnoninvasiveclinicaldata AT sidhubs arulebasedmethodforpredictingtheelectricalactivationoftheheartwithcardiacresynchronizationtherapyfromnoninvasiveclinicaldata AT sieniewiczb arulebasedmethodforpredictingtheelectricalactivationoftheheartwithcardiacresynchronizationtherapyfromnoninvasiveclinicaldata AT beharj arulebasedmethodforpredictingtheelectricalactivationoftheheartwithcardiacresynchronizationtherapyfromnoninvasiveclinicaldata AT mafiradm arulebasedmethodforpredictingtheelectricalactivationoftheheartwithcardiacresynchronizationtherapyfromnoninvasiveclinicaldata AT plankg arulebasedmethodforpredictingtheelectricalactivationoftheheartwithcardiacresynchronizationtherapyfromnoninvasiveclinicaldata AT prinzenfw arulebasedmethodforpredictingtheelectricalactivationoftheheartwithcardiacresynchronizationtherapyfromnoninvasiveclinicaldata AT rinaldica arulebasedmethodforpredictingtheelectricalactivationoftheheartwithcardiacresynchronizationtherapyfromnoninvasiveclinicaldata AT vernooyk arulebasedmethodforpredictingtheelectricalactivationoftheheartwithcardiacresynchronizationtherapyfromnoninvasiveclinicaldata AT niederers arulebasedmethodforpredictingtheelectricalactivationoftheheartwithcardiacresynchronizationtherapyfromnoninvasiveclinicaldata AT leeawc rulebasedmethodforpredictingtheelectricalactivationoftheheartwithcardiacresynchronizationtherapyfromnoninvasiveclinicaldata AT nguyenuc rulebasedmethodforpredictingtheelectricalactivationoftheheartwithcardiacresynchronizationtherapyfromnoninvasiveclinicaldata AT razeghio rulebasedmethodforpredictingtheelectricalactivationoftheheartwithcardiacresynchronizationtherapyfromnoninvasiveclinicaldata AT gouldj rulebasedmethodforpredictingtheelectricalactivationoftheheartwithcardiacresynchronizationtherapyfromnoninvasiveclinicaldata AT sidhubs rulebasedmethodforpredictingtheelectricalactivationoftheheartwithcardiacresynchronizationtherapyfromnoninvasiveclinicaldata AT sieniewiczb rulebasedmethodforpredictingtheelectricalactivationoftheheartwithcardiacresynchronizationtherapyfromnoninvasiveclinicaldata AT beharj rulebasedmethodforpredictingtheelectricalactivationoftheheartwithcardiacresynchronizationtherapyfromnoninvasiveclinicaldata AT mafiradm rulebasedmethodforpredictingtheelectricalactivationoftheheartwithcardiacresynchronizationtherapyfromnoninvasiveclinicaldata AT plankg rulebasedmethodforpredictingtheelectricalactivationoftheheartwithcardiacresynchronizationtherapyfromnoninvasiveclinicaldata AT prinzenfw rulebasedmethodforpredictingtheelectricalactivationoftheheartwithcardiacresynchronizationtherapyfromnoninvasiveclinicaldata AT rinaldica rulebasedmethodforpredictingtheelectricalactivationoftheheartwithcardiacresynchronizationtherapyfromnoninvasiveclinicaldata AT vernooyk rulebasedmethodforpredictingtheelectricalactivationoftheheartwithcardiacresynchronizationtherapyfromnoninvasiveclinicaldata AT niederers rulebasedmethodforpredictingtheelectricalactivationoftheheartwithcardiacresynchronizationtherapyfromnoninvasiveclinicaldata |