Cargando…
Automatic choroidal segmentation in OCT images using supervised deep learning methods
The analysis of the choroid in the eye is crucial for our understanding of a range of ocular diseases and physiological processes. Optical coherence tomography (OCT) imaging provides the ability to capture highly detailed cross-sectional images of the choroid yet only a very limited number of commer...
Autores principales: | Kugelman, Jason, Alonso-Caneiro, David, Read, Scott A., Hamwood, Jared, Vincent, Stephen J., Chen, Fred K., Collins, Michael J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6746702/ https://www.ncbi.nlm.nih.gov/pubmed/31527630 http://dx.doi.org/10.1038/s41598-019-49816-4 |
Ejemplares similares
-
A comparison of deep learning U-Net architectures for posterior segment OCT retinal layer segmentation
por: Kugelman, Jason, et al.
Publicado: (2022) -
A deep learning method for automatic segmentation of the bony orbit in MRI and CT images
por: Hamwood, Jared, et al.
Publicado: (2021) -
OCT Retinal and Choroidal Layer Instance Segmentation Using Mask R-CNN
por: Viedma, Ignacio A., et al.
Publicado: (2022) -
Automatic Detection of Cone Photoreceptors With Fully Convolutional Networks
por: Hamwood, Jared, et al.
Publicado: (2019) -
Deep feature loss to denoise OCT images using deep neural networks
por: Mehdizadeh, Maryam, et al.
Publicado: (2021)