Cargando…

Identifying the Speech Production Stages in Early and Late Adulthood by Using Electroencephalography

Structural changes in the brain take place throughout one’s life. Changes related to cognitive decline may delay the stages of the speech production process in the aging brain. For example, semantic memory decline and poor inhibition may delay the retrieval of a concept from the mental lexicon. Elec...

Descripción completa

Detalles Bibliográficos
Autores principales: den Hollander, Jakolien, Jonkers, Roel, Mariën, Peter, Bastiaanse, Roelien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6746946/
https://www.ncbi.nlm.nih.gov/pubmed/31551734
http://dx.doi.org/10.3389/fnhum.2019.00298
_version_ 1783451787765743616
author den Hollander, Jakolien
Jonkers, Roel
Mariën, Peter
Bastiaanse, Roelien
author_facet den Hollander, Jakolien
Jonkers, Roel
Mariën, Peter
Bastiaanse, Roelien
author_sort den Hollander, Jakolien
collection PubMed
description Structural changes in the brain take place throughout one’s life. Changes related to cognitive decline may delay the stages of the speech production process in the aging brain. For example, semantic memory decline and poor inhibition may delay the retrieval of a concept from the mental lexicon. Electroencephalography (EEG) is a valuable method for identifying the timing of speech production stages. So far, studies using EEG mainly focused on a particular speech production stage in a particular group of subjects. Differences between subject groups and between methodologies have complicated identifying time windows of the speech production stages. For the current study, the speech production stages lemma retrieval, lexeme retrieval, phonological encoding, and phonetic encoding were tracked using a 64-channel EEG in 20 younger adults and 20 older adults. Picture-naming tasks were used to identify lemma retrieval, using semantic interference through previously named pictures from the same semantic category, and lexeme retrieval, using words with varying age of acquisition. Non-word reading was used to target phonological encoding (using non-words with a variable number of phonemes) and phonetic encoding (using non-words that differed in spoken syllable frequency). Stimulus-locked and response-locked cluster-based permutation analyses were used to identify the timing of these stages in the full time course of speech production from stimulus presentation until 100 ms before response onset in both subject groups. It was found that the timing of each speech production stage could be identified. Even though older adults showed longer response times for every task, only the timing of the lexeme retrieval stage was later for the older adults compared to the younger adults, while no such delay was found for the timing of the other stages. The results of a second cluster-based permutation analysis indicated that clusters that were observed in the timing of the stages for one group were absent in the other subject group, which was mainly the case in stimulus-locked time windows. A z-score mapping analysis was used to compare the scalp distributions related to the stages between the older and younger adults. No differences between both groups were observed with respect to scalp distributions, suggesting that the same groups of neurons are involved in the four stages, regardless of the adults’ age, even though the timing of the individual stages is different in both groups.
format Online
Article
Text
id pubmed-6746946
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-67469462019-09-24 Identifying the Speech Production Stages in Early and Late Adulthood by Using Electroencephalography den Hollander, Jakolien Jonkers, Roel Mariën, Peter Bastiaanse, Roelien Front Hum Neurosci Neuroscience Structural changes in the brain take place throughout one’s life. Changes related to cognitive decline may delay the stages of the speech production process in the aging brain. For example, semantic memory decline and poor inhibition may delay the retrieval of a concept from the mental lexicon. Electroencephalography (EEG) is a valuable method for identifying the timing of speech production stages. So far, studies using EEG mainly focused on a particular speech production stage in a particular group of subjects. Differences between subject groups and between methodologies have complicated identifying time windows of the speech production stages. For the current study, the speech production stages lemma retrieval, lexeme retrieval, phonological encoding, and phonetic encoding were tracked using a 64-channel EEG in 20 younger adults and 20 older adults. Picture-naming tasks were used to identify lemma retrieval, using semantic interference through previously named pictures from the same semantic category, and lexeme retrieval, using words with varying age of acquisition. Non-word reading was used to target phonological encoding (using non-words with a variable number of phonemes) and phonetic encoding (using non-words that differed in spoken syllable frequency). Stimulus-locked and response-locked cluster-based permutation analyses were used to identify the timing of these stages in the full time course of speech production from stimulus presentation until 100 ms before response onset in both subject groups. It was found that the timing of each speech production stage could be identified. Even though older adults showed longer response times for every task, only the timing of the lexeme retrieval stage was later for the older adults compared to the younger adults, while no such delay was found for the timing of the other stages. The results of a second cluster-based permutation analysis indicated that clusters that were observed in the timing of the stages for one group were absent in the other subject group, which was mainly the case in stimulus-locked time windows. A z-score mapping analysis was used to compare the scalp distributions related to the stages between the older and younger adults. No differences between both groups were observed with respect to scalp distributions, suggesting that the same groups of neurons are involved in the four stages, regardless of the adults’ age, even though the timing of the individual stages is different in both groups. Frontiers Media S.A. 2019-09-10 /pmc/articles/PMC6746946/ /pubmed/31551734 http://dx.doi.org/10.3389/fnhum.2019.00298 Text en Copyright © 2019 den Hollander, Jonkers, Mariën and Bastiaanse. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
den Hollander, Jakolien
Jonkers, Roel
Mariën, Peter
Bastiaanse, Roelien
Identifying the Speech Production Stages in Early and Late Adulthood by Using Electroencephalography
title Identifying the Speech Production Stages in Early and Late Adulthood by Using Electroencephalography
title_full Identifying the Speech Production Stages in Early and Late Adulthood by Using Electroencephalography
title_fullStr Identifying the Speech Production Stages in Early and Late Adulthood by Using Electroencephalography
title_full_unstemmed Identifying the Speech Production Stages in Early and Late Adulthood by Using Electroencephalography
title_short Identifying the Speech Production Stages in Early and Late Adulthood by Using Electroencephalography
title_sort identifying the speech production stages in early and late adulthood by using electroencephalography
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6746946/
https://www.ncbi.nlm.nih.gov/pubmed/31551734
http://dx.doi.org/10.3389/fnhum.2019.00298
work_keys_str_mv AT denhollanderjakolien identifyingthespeechproductionstagesinearlyandlateadulthoodbyusingelectroencephalography
AT jonkersroel identifyingthespeechproductionstagesinearlyandlateadulthoodbyusingelectroencephalography
AT marienpeter identifyingthespeechproductionstagesinearlyandlateadulthoodbyusingelectroencephalography
AT bastiaanseroelien identifyingthespeechproductionstagesinearlyandlateadulthoodbyusingelectroencephalography