Cargando…

Development of SpyTag/SpyCatcher-Bacmid Expression Vector System (SpyBEVS) for Protein Bioconjugations Inside of Silkworms

Protein conjugations at post-translational levels are known to be essential to protein stability and function. Recently, it has been proven that the split protein CnaB2 (SpyTag/SpyCatcher, ST/SC) from Streptococcus pyogenes can induce covalent conjugation rapidly and efficiently under various condit...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Jian, Kato, Tatsuya, Park, Enoch Y.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747175/
https://www.ncbi.nlm.nih.gov/pubmed/31470538
http://dx.doi.org/10.3390/ijms20174228
Descripción
Sumario:Protein conjugations at post-translational levels are known to be essential to protein stability and function. Recently, it has been proven that the split protein CnaB2 (SpyTag/SpyCatcher, ST/SC) from Streptococcus pyogenes can induce covalent conjugation rapidly and efficiently under various conditions. The protein of interest fused with the split protein SC/ST could be assembled spontaneously. In light of this finding, we introduced the ST/SC protein coupling concept into the silkworm-bacmid protein expression system (SpyBEVS). As a proof of concept, we first examined and confirmed that a competent ligation occurred between ST/SC-fused protein partners in vitro in cultured silkworm cells and in vivo in silkworm larvae by co-infection of several recombinant baculoviruses. The protein conjugation could be also achieved sufficiently by a simple one-step mixture of purified ST/SC-tagged peptide-protein pairs in vitro. Given the flexibility and robustness of silkworm-BEVS, our results on SpyBEVS show an alternative method for enabling the production of protein decorations in vitro and inside of silkworms.