Cargando…

Confined Dynamics of Water in Transmembrane Pore of TRPV1 Ion Channel

Solvation effects play a key role in chemical and biological processes. The microscopic properties of water near molecular surfaces are radically different from those in the bulk. Furthermore, the behavior of water in confined volumes of a nanometer scale, including transmembrane pores of ion channe...

Descripción completa

Detalles Bibliográficos
Autores principales: Trofimov, Yury A., Krylov, Nikolay A., Efremov, Roman G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747475/
https://www.ncbi.nlm.nih.gov/pubmed/31480555
http://dx.doi.org/10.3390/ijms20174285
_version_ 1783451907338010624
author Trofimov, Yury A.
Krylov, Nikolay A.
Efremov, Roman G.
author_facet Trofimov, Yury A.
Krylov, Nikolay A.
Efremov, Roman G.
author_sort Trofimov, Yury A.
collection PubMed
description Solvation effects play a key role in chemical and biological processes. The microscopic properties of water near molecular surfaces are radically different from those in the bulk. Furthermore, the behavior of water in confined volumes of a nanometer scale, including transmembrane pores of ion channels, is especially nontrivial. Knowledge at the molecular level of structural and dynamic parameters of water in such systems is necessary to understand the mechanisms of ion channels functioning. In this work, the results of molecular dynamics (MD) simulations of water in the pore and selectivity filter domains of TRPV1 (Transient Receptor Potential Vanilloid type 1) membrane channel are considered. These domains represent nanoscale volumes with strongly amphiphilic walls, where physical behavior of water radically differs from that of free hydration (e.g., at protein interfaces) or in the bulk. Inside the pore and filter domains, water reveals a very heterogeneous spatial distribution and unusual dynamics: It forms compact areas localized near polar groups of particular residues. Residence time of water molecules in such areas is at least 1.5 to 3 times larger than that observed for similar groups at the protein surface. Presumably, these water “blobs” play an important role in the functional activity of TRPV1. In particular, they take part in hydration of the hydrophobic TRPV1 pore by localizing up to six waters near the so-called “lower gate” of the channel and reducing by this way the free energy barrier for ion and water transport. Although the channel is formed by four identical protein subunits, which are symmetrically packed in the initial experimental 3D structure, in the course of MD simulations, hydration of the same amino acid residues of individual subunits may differ significantly. This greatly affects the microscopic picture of the distribution of water in the channel and, potentially, the mechanism of its functioning. Therefore, reconstruction of the full picture of TRPV1 channel solvation requires thorough atomistic simulations and analysis. It is important that the naturally occurring porous volumes, like ion-conducting protein domains, reveal much more sophisticated and fine-tuned regulation of solvation than, e.g., artificially designed carbon nanotubes.
format Online
Article
Text
id pubmed-6747475
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-67474752019-09-27 Confined Dynamics of Water in Transmembrane Pore of TRPV1 Ion Channel Trofimov, Yury A. Krylov, Nikolay A. Efremov, Roman G. Int J Mol Sci Article Solvation effects play a key role in chemical and biological processes. The microscopic properties of water near molecular surfaces are radically different from those in the bulk. Furthermore, the behavior of water in confined volumes of a nanometer scale, including transmembrane pores of ion channels, is especially nontrivial. Knowledge at the molecular level of structural and dynamic parameters of water in such systems is necessary to understand the mechanisms of ion channels functioning. In this work, the results of molecular dynamics (MD) simulations of water in the pore and selectivity filter domains of TRPV1 (Transient Receptor Potential Vanilloid type 1) membrane channel are considered. These domains represent nanoscale volumes with strongly amphiphilic walls, where physical behavior of water radically differs from that of free hydration (e.g., at protein interfaces) or in the bulk. Inside the pore and filter domains, water reveals a very heterogeneous spatial distribution and unusual dynamics: It forms compact areas localized near polar groups of particular residues. Residence time of water molecules in such areas is at least 1.5 to 3 times larger than that observed for similar groups at the protein surface. Presumably, these water “blobs” play an important role in the functional activity of TRPV1. In particular, they take part in hydration of the hydrophobic TRPV1 pore by localizing up to six waters near the so-called “lower gate” of the channel and reducing by this way the free energy barrier for ion and water transport. Although the channel is formed by four identical protein subunits, which are symmetrically packed in the initial experimental 3D structure, in the course of MD simulations, hydration of the same amino acid residues of individual subunits may differ significantly. This greatly affects the microscopic picture of the distribution of water in the channel and, potentially, the mechanism of its functioning. Therefore, reconstruction of the full picture of TRPV1 channel solvation requires thorough atomistic simulations and analysis. It is important that the naturally occurring porous volumes, like ion-conducting protein domains, reveal much more sophisticated and fine-tuned regulation of solvation than, e.g., artificially designed carbon nanotubes. MDPI 2019-09-01 /pmc/articles/PMC6747475/ /pubmed/31480555 http://dx.doi.org/10.3390/ijms20174285 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Trofimov, Yury A.
Krylov, Nikolay A.
Efremov, Roman G.
Confined Dynamics of Water in Transmembrane Pore of TRPV1 Ion Channel
title Confined Dynamics of Water in Transmembrane Pore of TRPV1 Ion Channel
title_full Confined Dynamics of Water in Transmembrane Pore of TRPV1 Ion Channel
title_fullStr Confined Dynamics of Water in Transmembrane Pore of TRPV1 Ion Channel
title_full_unstemmed Confined Dynamics of Water in Transmembrane Pore of TRPV1 Ion Channel
title_short Confined Dynamics of Water in Transmembrane Pore of TRPV1 Ion Channel
title_sort confined dynamics of water in transmembrane pore of trpv1 ion channel
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747475/
https://www.ncbi.nlm.nih.gov/pubmed/31480555
http://dx.doi.org/10.3390/ijms20174285
work_keys_str_mv AT trofimovyurya confineddynamicsofwaterintransmembraneporeoftrpv1ionchannel
AT krylovnikolaya confineddynamicsofwaterintransmembraneporeoftrpv1ionchannel
AT efremovromang confineddynamicsofwaterintransmembraneporeoftrpv1ionchannel