Cargando…
Formation and Properties of Biomedical Ti-Ta Foams Prepared from Nanoprecursors by Thermal Dealloying Process
The paper presents a promising method of preparation of titanium-based foams by the thermal dealloying method. The first step of this study was the Ti-Ta-Mg based nanopowder preparation using the mechanical alloying (MA) process performed at room temperature. The next step was forming the green comp...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747620/ https://www.ncbi.nlm.nih.gov/pubmed/31443338 http://dx.doi.org/10.3390/ma12172668 |
_version_ | 1783451941210161152 |
---|---|
author | Adamek, Grzegorz Kozlowski, Mikolaj Jurczyk, Mieczyslawa U. Wirstlein, Przemyslaw Zurawski, Jakub Jakubowicz, Jaroslaw |
author_facet | Adamek, Grzegorz Kozlowski, Mikolaj Jurczyk, Mieczyslawa U. Wirstlein, Przemyslaw Zurawski, Jakub Jakubowicz, Jaroslaw |
author_sort | Adamek, Grzegorz |
collection | PubMed |
description | The paper presents a promising method of preparation of titanium-based foams by the thermal dealloying method. The first step of this study was the Ti-Ta-Mg based nanopowder preparation using the mechanical alloying (MA) process performed at room temperature. The next step was forming the green compacts by cold pressing and then sintering with magnesium dealloying from the titanium-based alloy structure. The mechanism of the porous structure formation was based on the removal of magnesium from the titanium alloy at a temperature higher than the boiling point of magnesium (1090 °C). The influence of the Mg content on the formation of the porous Ti-30Ta foam has been investigated. The sintering stage was performed in vacuum. During the dealloying process, the magnesium atoms diffuse from the middle to the surface of the sample and combine to form vapors and then evaporate leaving pores surrounded by the metallic scaffold. The porosity, the mechanical properties as well as biocompatibility have been investigated. The titanium-based foam of high porosity (up to 76%) and the pore size distribution from nano- to micro-scale have been successfully prepared. For the medical applications, the Ti-Ta metallic foams have shown a positive behavior in the MTT test. The as-shown results clearly exhibit a great potential for thermal dealloying in the preparation of porous structures. |
format | Online Article Text |
id | pubmed-6747620 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-67476202019-09-27 Formation and Properties of Biomedical Ti-Ta Foams Prepared from Nanoprecursors by Thermal Dealloying Process Adamek, Grzegorz Kozlowski, Mikolaj Jurczyk, Mieczyslawa U. Wirstlein, Przemyslaw Zurawski, Jakub Jakubowicz, Jaroslaw Materials (Basel) Article The paper presents a promising method of preparation of titanium-based foams by the thermal dealloying method. The first step of this study was the Ti-Ta-Mg based nanopowder preparation using the mechanical alloying (MA) process performed at room temperature. The next step was forming the green compacts by cold pressing and then sintering with magnesium dealloying from the titanium-based alloy structure. The mechanism of the porous structure formation was based on the removal of magnesium from the titanium alloy at a temperature higher than the boiling point of magnesium (1090 °C). The influence of the Mg content on the formation of the porous Ti-30Ta foam has been investigated. The sintering stage was performed in vacuum. During the dealloying process, the magnesium atoms diffuse from the middle to the surface of the sample and combine to form vapors and then evaporate leaving pores surrounded by the metallic scaffold. The porosity, the mechanical properties as well as biocompatibility have been investigated. The titanium-based foam of high porosity (up to 76%) and the pore size distribution from nano- to micro-scale have been successfully prepared. For the medical applications, the Ti-Ta metallic foams have shown a positive behavior in the MTT test. The as-shown results clearly exhibit a great potential for thermal dealloying in the preparation of porous structures. MDPI 2019-08-22 /pmc/articles/PMC6747620/ /pubmed/31443338 http://dx.doi.org/10.3390/ma12172668 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Adamek, Grzegorz Kozlowski, Mikolaj Jurczyk, Mieczyslawa U. Wirstlein, Przemyslaw Zurawski, Jakub Jakubowicz, Jaroslaw Formation and Properties of Biomedical Ti-Ta Foams Prepared from Nanoprecursors by Thermal Dealloying Process |
title | Formation and Properties of Biomedical Ti-Ta Foams Prepared from Nanoprecursors by Thermal Dealloying Process |
title_full | Formation and Properties of Biomedical Ti-Ta Foams Prepared from Nanoprecursors by Thermal Dealloying Process |
title_fullStr | Formation and Properties of Biomedical Ti-Ta Foams Prepared from Nanoprecursors by Thermal Dealloying Process |
title_full_unstemmed | Formation and Properties of Biomedical Ti-Ta Foams Prepared from Nanoprecursors by Thermal Dealloying Process |
title_short | Formation and Properties of Biomedical Ti-Ta Foams Prepared from Nanoprecursors by Thermal Dealloying Process |
title_sort | formation and properties of biomedical ti-ta foams prepared from nanoprecursors by thermal dealloying process |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747620/ https://www.ncbi.nlm.nih.gov/pubmed/31443338 http://dx.doi.org/10.3390/ma12172668 |
work_keys_str_mv | AT adamekgrzegorz formationandpropertiesofbiomedicaltitafoamspreparedfromnanoprecursorsbythermaldealloyingprocess AT kozlowskimikolaj formationandpropertiesofbiomedicaltitafoamspreparedfromnanoprecursorsbythermaldealloyingprocess AT jurczykmieczyslawau formationandpropertiesofbiomedicaltitafoamspreparedfromnanoprecursorsbythermaldealloyingprocess AT wirstleinprzemyslaw formationandpropertiesofbiomedicaltitafoamspreparedfromnanoprecursorsbythermaldealloyingprocess AT zurawskijakub formationandpropertiesofbiomedicaltitafoamspreparedfromnanoprecursorsbythermaldealloyingprocess AT jakubowiczjaroslaw formationandpropertiesofbiomedicaltitafoamspreparedfromnanoprecursorsbythermaldealloyingprocess |