Cargando…
Modified Fourier–Galerkin Solution for Aerospace Skin-Stiffener Panels Subjected to Interface Force and Mixed Boundary Conditions
Aeronautical stiffened panels composed of thin shells and beams are prone to deformation or buckling due to the combined loading, functional boundary conditions and interface forces between joined parts in the assembly processes. In this paper, a mechanical prediction model of the multi-component pa...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747805/ https://www.ncbi.nlm.nih.gov/pubmed/31480238 http://dx.doi.org/10.3390/ma12172794 |
_version_ | 1783451978751279104 |
---|---|
author | Hou, Renluan Wang, Qing Li, Jiangxiong Ke, Yinglin |
author_facet | Hou, Renluan Wang, Qing Li, Jiangxiong Ke, Yinglin |
author_sort | Hou, Renluan |
collection | PubMed |
description | Aeronautical stiffened panels composed of thin shells and beams are prone to deformation or buckling due to the combined loading, functional boundary conditions and interface forces between joined parts in the assembly processes. In this paper, a mechanical prediction model of the multi-component panel is presented to investigate the deformation propagation, which has a significant effect on the fatigue life of built-up structures. Governing equations of Kirchhoff–Love shell are established, of which displacement expressions are transformed into Fourier series expansions of several introduced potential functions by applying the Galerkin approach. This paper presents an intermediate quantity, concentrated force at the joining interface, to describe mechanical interactions between the coupled components. Based on the Euler–Bernoulli beam theory, unknown intermediate quantity is calculated by solving a 3D stringer deformation equation with static boundary conditions specified on joining points. Compared with the finite element simulation and integrated model, the proposed method can substantially reduce grid number without jeopardizing the prediction accuracy. Practical experiment of the aircraft panel assembly is also performed to obtain the measured data. Maximum deviation between the experimental and predicted clearance values is 0.193 mm, which is enough to meet the requirement for predicting dimensional variations of the aircraft panel assembly. |
format | Online Article Text |
id | pubmed-6747805 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-67478052019-09-27 Modified Fourier–Galerkin Solution for Aerospace Skin-Stiffener Panels Subjected to Interface Force and Mixed Boundary Conditions Hou, Renluan Wang, Qing Li, Jiangxiong Ke, Yinglin Materials (Basel) Article Aeronautical stiffened panels composed of thin shells and beams are prone to deformation or buckling due to the combined loading, functional boundary conditions and interface forces between joined parts in the assembly processes. In this paper, a mechanical prediction model of the multi-component panel is presented to investigate the deformation propagation, which has a significant effect on the fatigue life of built-up structures. Governing equations of Kirchhoff–Love shell are established, of which displacement expressions are transformed into Fourier series expansions of several introduced potential functions by applying the Galerkin approach. This paper presents an intermediate quantity, concentrated force at the joining interface, to describe mechanical interactions between the coupled components. Based on the Euler–Bernoulli beam theory, unknown intermediate quantity is calculated by solving a 3D stringer deformation equation with static boundary conditions specified on joining points. Compared with the finite element simulation and integrated model, the proposed method can substantially reduce grid number without jeopardizing the prediction accuracy. Practical experiment of the aircraft panel assembly is also performed to obtain the measured data. Maximum deviation between the experimental and predicted clearance values is 0.193 mm, which is enough to meet the requirement for predicting dimensional variations of the aircraft panel assembly. MDPI 2019-08-30 /pmc/articles/PMC6747805/ /pubmed/31480238 http://dx.doi.org/10.3390/ma12172794 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hou, Renluan Wang, Qing Li, Jiangxiong Ke, Yinglin Modified Fourier–Galerkin Solution for Aerospace Skin-Stiffener Panels Subjected to Interface Force and Mixed Boundary Conditions |
title | Modified Fourier–Galerkin Solution for Aerospace Skin-Stiffener Panels Subjected to Interface Force and Mixed Boundary Conditions |
title_full | Modified Fourier–Galerkin Solution for Aerospace Skin-Stiffener Panels Subjected to Interface Force and Mixed Boundary Conditions |
title_fullStr | Modified Fourier–Galerkin Solution for Aerospace Skin-Stiffener Panels Subjected to Interface Force and Mixed Boundary Conditions |
title_full_unstemmed | Modified Fourier–Galerkin Solution for Aerospace Skin-Stiffener Panels Subjected to Interface Force and Mixed Boundary Conditions |
title_short | Modified Fourier–Galerkin Solution for Aerospace Skin-Stiffener Panels Subjected to Interface Force and Mixed Boundary Conditions |
title_sort | modified fourier–galerkin solution for aerospace skin-stiffener panels subjected to interface force and mixed boundary conditions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747805/ https://www.ncbi.nlm.nih.gov/pubmed/31480238 http://dx.doi.org/10.3390/ma12172794 |
work_keys_str_mv | AT hourenluan modifiedfouriergalerkinsolutionforaerospaceskinstiffenerpanelssubjectedtointerfaceforceandmixedboundaryconditions AT wangqing modifiedfouriergalerkinsolutionforaerospaceskinstiffenerpanelssubjectedtointerfaceforceandmixedboundaryconditions AT lijiangxiong modifiedfouriergalerkinsolutionforaerospaceskinstiffenerpanelssubjectedtointerfaceforceandmixedboundaryconditions AT keyinglin modifiedfouriergalerkinsolutionforaerospaceskinstiffenerpanelssubjectedtointerfaceforceandmixedboundaryconditions |