Cargando…
Neuromorphic Spiking Neural Networks and Their Memristor-CMOS Hardware Implementations
Inspired by biology, neuromorphic systems have been trying to emulate the human brain for decades, taking advantage of its massive parallelism and sparse information coding. Recently, several large-scale hardware projects have demonstrated the outstanding capabilities of this paradigm for applicatio...
Autores principales: | Camuñas-Mesa, Luis A., Linares-Barranco, Bernabé, Serrano-Gotarredona, Teresa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747825/ https://www.ncbi.nlm.nih.gov/pubmed/31461877 http://dx.doi.org/10.3390/ma12172745 |
Ejemplares similares
-
Hardware Implementation of Differential Oscillatory Neural Networks Using VO( 2)-Based Oscillators and Memristor-Bridge Circuits
por: Shamsi, Jafar, et al.
Publicado: (2021) -
A CMOS–memristor hybrid system for implementing stochastic binary spike timing-dependent plasticity
por: Ahmadi-Farsani, Javad, et al.
Publicado: (2022) -
STDP and STDP variations with memristors for spiking neuromorphic learning systems
por: Serrano-Gotarredona, T., et al.
Publicado: (2013) -
A Configurable Event-Driven Convolutional Node with Rate Saturation Mechanism for Modular ConvNet Systems Implementation
por: Camuñas-Mesa, Luis A., et al.
Publicado: (2018) -
On Spike-Timing-Dependent-Plasticity, Memristive Devices, and Building a Self-Learning Visual Cortex
por: Zamarreño-Ramos, Carlos, et al.
Publicado: (2011)