Cargando…
Effect of Water on the Dynamic Tensile Mechanical Properties of Calcium Silicate Hydrate: Based on Molecular Dynamics Simulation
To study the effect of water on the dynamic mechanical properties of calcium silicate hydrate (C–S–H) at the atomic scale, the molecular dynamics simulations were performed in uniaxial tension with different strain rates for C–S–H with a degree of saturation from 0% to 100%. Our calculations demonst...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747960/ https://www.ncbi.nlm.nih.gov/pubmed/31484393 http://dx.doi.org/10.3390/ma12172837 |
_version_ | 1783452011017011200 |
---|---|
author | Zhou, Jikai Liang, Yuanzhi |
author_facet | Zhou, Jikai Liang, Yuanzhi |
author_sort | Zhou, Jikai |
collection | PubMed |
description | To study the effect of water on the dynamic mechanical properties of calcium silicate hydrate (C–S–H) at the atomic scale, the molecular dynamics simulations were performed in uniaxial tension with different strain rates for C–S–H with a degree of saturation from 0% to 100%. Our calculations demonstrate that the dynamic tensile mechanical properties of C–S–H decrease with increasing water content and increase with increasing strain rates. With an increase in the degree of saturation, the strain rate sensitivity of C–S–H tends to increase. According to Morse potential function, the tensile stress-strain relationship curves of C–S–H are decomposed and fitted, and the dynamic tensile constitutive relationship of C–S–H considering the effect of water content is proposed. This reveals the strain rate effect of the cementitious materials with different water content from molecular insights, and the dynamic constitutive relationship obtained in this paper is necessary to the modelling of cementitious materials at the meso-scale. |
format | Online Article Text |
id | pubmed-6747960 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-67479602019-09-27 Effect of Water on the Dynamic Tensile Mechanical Properties of Calcium Silicate Hydrate: Based on Molecular Dynamics Simulation Zhou, Jikai Liang, Yuanzhi Materials (Basel) Article To study the effect of water on the dynamic mechanical properties of calcium silicate hydrate (C–S–H) at the atomic scale, the molecular dynamics simulations were performed in uniaxial tension with different strain rates for C–S–H with a degree of saturation from 0% to 100%. Our calculations demonstrate that the dynamic tensile mechanical properties of C–S–H decrease with increasing water content and increase with increasing strain rates. With an increase in the degree of saturation, the strain rate sensitivity of C–S–H tends to increase. According to Morse potential function, the tensile stress-strain relationship curves of C–S–H are decomposed and fitted, and the dynamic tensile constitutive relationship of C–S–H considering the effect of water content is proposed. This reveals the strain rate effect of the cementitious materials with different water content from molecular insights, and the dynamic constitutive relationship obtained in this paper is necessary to the modelling of cementitious materials at the meso-scale. MDPI 2019-09-03 /pmc/articles/PMC6747960/ /pubmed/31484393 http://dx.doi.org/10.3390/ma12172837 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhou, Jikai Liang, Yuanzhi Effect of Water on the Dynamic Tensile Mechanical Properties of Calcium Silicate Hydrate: Based on Molecular Dynamics Simulation |
title | Effect of Water on the Dynamic Tensile Mechanical Properties of Calcium Silicate Hydrate: Based on Molecular Dynamics Simulation |
title_full | Effect of Water on the Dynamic Tensile Mechanical Properties of Calcium Silicate Hydrate: Based on Molecular Dynamics Simulation |
title_fullStr | Effect of Water on the Dynamic Tensile Mechanical Properties of Calcium Silicate Hydrate: Based on Molecular Dynamics Simulation |
title_full_unstemmed | Effect of Water on the Dynamic Tensile Mechanical Properties of Calcium Silicate Hydrate: Based on Molecular Dynamics Simulation |
title_short | Effect of Water on the Dynamic Tensile Mechanical Properties of Calcium Silicate Hydrate: Based on Molecular Dynamics Simulation |
title_sort | effect of water on the dynamic tensile mechanical properties of calcium silicate hydrate: based on molecular dynamics simulation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747960/ https://www.ncbi.nlm.nih.gov/pubmed/31484393 http://dx.doi.org/10.3390/ma12172837 |
work_keys_str_mv | AT zhoujikai effectofwateronthedynamictensilemechanicalpropertiesofcalciumsilicatehydratebasedonmoleculardynamicssimulation AT liangyuanzhi effectofwateronthedynamictensilemechanicalpropertiesofcalciumsilicatehydratebasedonmoleculardynamicssimulation |