Cargando…
On-Site Health Monitoring of Composite Bolted Joint Using Built-In Distributed Eddy Current Sensor Network
There is an urgent need to monitor the structural state of composite bolted joints while still remaining in service; however, there are many difficulties in analyzing their strength and failure modes. In this paper, a built-in distributed eddy current (EC) sensor network based on EC array sensing fi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747974/ https://www.ncbi.nlm.nih.gov/pubmed/31470616 http://dx.doi.org/10.3390/ma12172785 |
Sumario: | There is an urgent need to monitor the structural state of composite bolted joints while still remaining in service; however, there are many difficulties in analyzing their strength and failure modes. In this paper, a built-in distributed eddy current (EC) sensor network based on EC array sensing film is developed to monitor the hole-edge damages of composite bolted joints. The EC array sensing film is bonded onto the bolt and consists of one exciting coil and four separate sensing coils. Experiments are conducted on unidirectional composite specimens to validate the ability of the EC array sensing film to quantitatively track the damage that occurs at the hole edge and to investigate the performances of the EC array sensing films with different configurations of the exciting coil. Experimental results show that the induced voltage of sensing coil changes only if the damage appears on the laminate structure where that particular sensing coil is located, whereas the induced voltages of the other sensing coils on other laminate plates remain unchanged. Numerical simulation based on the finite element method is also carried out to investigate and explain the phenomena observed in the experiments and to analyze the distribution of the EC around the bolt hole. Both experimental and numerical simulation results demonstrate that the developed EC array sensing film can effectively identify not only whether there is damage at the hole edge but also the damage location within the thickness and quantitative size. |
---|