Cargando…
Subversion of RAB5-regulated autophagy by the intracellular pathogen Ehrlichia chaffeensis
Intracellular pathogens often exploit RAB functions to establish a safe haven in which to survive and proliferate. Ehrlichia chaffeensis, an obligatory intracellular bacterium, resides in specialized membrane-bound inclusions that have early endosome–like characteristics, e.g., resident RAB5 GTPase...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748376/ https://www.ncbi.nlm.nih.gov/pubmed/28650718 http://dx.doi.org/10.1080/21541248.2017.1332506 |
Sumario: | Intracellular pathogens often exploit RAB functions to establish a safe haven in which to survive and proliferate. Ehrlichia chaffeensis, an obligatory intracellular bacterium, resides in specialized membrane-bound inclusions that have early endosome–like characteristics, e.g., resident RAB5 GTPase and RAB5 effectors, including VPS34 (the catalytic subunit of class III phosphatidylinositol 3-kinase), but the inclusions lack late endosomal or lysosomal markers. Within inclusions, Ehrlichia obtains host-derived nutrients by inducing RAB5-regulated autophagy using Ehrlichia translocated factor-1 deployed by its type IV secretion system. This manipulation of RAB5 by a bacterial molecule offers a simple strategy for Ehrlichia to avoid destruction in lysosomes and obtain nutrients, membrane components, and a homeostatic intra-host-cell environment in which to grow. |
---|