Cargando…

Looking for therapeutic antibodies in next-generation sequencing repositories

Recently it has become possible to query the great diversity of natural antibody repertoires using next-generation sequencing (NGS). These methods are capable of producing millions of sequences in a single experiment. Here we compare clinical-stage therapeutic antibodies to the ~1b sequences from 60...

Descripción completa

Detalles Bibliográficos
Autores principales: Krawczyk, Konrad, Raybould, Matthew I. J., Kovaltsuk, Aleksandr, Deane, Charlotte M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748601/
https://www.ncbi.nlm.nih.gov/pubmed/31216939
http://dx.doi.org/10.1080/19420862.2019.1633884
Descripción
Sumario:Recently it has become possible to query the great diversity of natural antibody repertoires using next-generation sequencing (NGS). These methods are capable of producing millions of sequences in a single experiment. Here we compare clinical-stage therapeutic antibodies to the ~1b sequences from 60 independent sequencing studies in the Observed Antibody Space database, which includes antibody sequences from NGS analysis of immunoglobulin gene repertoires. Of 242 post-Phase 1 antibodies, we found 16 with sequence identity matches of 95% or better for both heavy and light chains. There are also 54 perfect matches to therapeutic CDR-H3 regions in the NGS outputs, suggesting a nontrivial amount of convergence between naturally observed sequences and those developed artificially. This has potential implications for both the legal protection of commercial antibodies and the discovery of antibody therapeutics.