Cargando…
DeepAMR for predicting co-occurrent resistance of Mycobacterium tuberculosis
MOTIVATION: Resistance co-occurrence within first-line anti-tuberculosis (TB) drugs is a common phenomenon. Existing methods based on genetic data analysis of Mycobacterium tuberculosis (MTB) have been able to predict resistance of MTB to individual drugs, but have not considered the resistance co-o...
Autores principales: | Yang, Yang, Walker, Timothy M, Walker, A Sarah, Wilson, Daniel J, Peto, Timothy E A, Crook, Derrick W, Shamout, Farah, Zhu, Tingting, Clifton, David A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748723/ https://www.ncbi.nlm.nih.gov/pubmed/30689732 http://dx.doi.org/10.1093/bioinformatics/btz067 |
Ejemplares similares
-
An end-to-end heterogeneous graph attention network for Mycobacterium tuberculosis drug-resistance prediction
por: Yang, Yang, et al.
Publicado: (2021) -
Application of machine learning techniques to tuberculosis drug resistance analysis
por: Kouchaki, Samaneh, et al.
Publicado: (2019) -
Multi-Label Random Forest Model for Tuberculosis Drug Resistance Classification and Mutation Ranking
por: Kouchaki, Samaneh, et al.
Publicado: (2020) -
Mycobacterium tuberculosis transmission in Birmingham, UK, 2009–19: An observational study
por: Walker, Timothy M., et al.
Publicado: (2022) -
Machine learning for classifying tuberculosis drug-resistance from DNA sequencing data
por: Yang, Yang, et al.
Publicado: (2018)