Cargando…
Network inference performance complexity: a consequence of topological, experimental and algorithmic determinants
MOTIVATION: Network inference algorithms aim to uncover key regulatory interactions governing cellular decision-making, disease progression and therapeutic interventions. Having an accurate blueprint of this regulation is essential for understanding and controlling cell behavior. However, the utilit...
Autores principales: | Muldoon, Joseph J, Yu, Jessica S, Fassia, Mohammad-Kasim, Bagheri, Neda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748731/ https://www.ncbi.nlm.nih.gov/pubmed/30932143 http://dx.doi.org/10.1093/bioinformatics/btz105 |
Ejemplares similares
-
Consequences of Common Topological Rearrangements for Partition Trees in Phylogenomic Inference
por: Chernomor, Olga, et al.
Publicado: (2015) -
Inferring dynamic topology for decoding spatiotemporal structures in complex heterogeneous networks
por: Wang, Shuo, et al.
Publicado: (2018) -
DART: Denoising Algorithm based on Relevance network Topology improves molecular pathway activity inference
por: Jiao, Yan, et al.
Publicado: (2011) -
Topological network features determine convergence rate of distributed average algorithms
por: Sirocchi, Christel, et al.
Publicado: (2022) -
Inferring the temperature dependence of population parameters: the effects of experimental design and inference algorithm
por: Palamara, Gian Marco, et al.
Publicado: (2014)