Cargando…
A unified approach for sparse dynamical system inference from temporal measurements
MOTIVATION: Temporal variations in biological systems and more generally in natural sciences are typically modeled as a set of ordinary, partial or stochastic differential or difference equations. Algorithms for learning the structure and the parameters of a dynamical system are distinguished based...
Autores principales: | Pantazis, Yannis, Tsamardinos, Ioannis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748758/ https://www.ncbi.nlm.nih.gov/pubmed/30715136 http://dx.doi.org/10.1093/bioinformatics/btz065 |
Ejemplares similares
-
Pathway Activity Score Learning for Dimensionality Reduction of Gene Expression Data
por: Karagiannaki, Ioulia, et al.
Publicado: (2020) -
Learning biologically-interpretable latent representations for gene expression data: Pathway Activity Score Learning Algorithm
por: Karagiannaki, Ioulia, et al.
Publicado: (2022) -
Inference of regulatory networks through temporally sparse data
por: Alali, Mohammad, et al.
Publicado: (2022) -
Efficient inference for sparse latent variable models of transcriptional regulation
por: Dai, Zhenwen, et al.
Publicado: (2017) -
Inference of dynamic systems from noisy and sparse data via manifold-constrained Gaussian processes
por: Yang, Shihao, et al.
Publicado: (2021)