Cargando…
Evaluating stably expressed genes in single cells
BACKGROUND: Single-cell RNA-seq (scRNA-seq) profiling has revealed remarkable variation in transcription, suggesting that expression of many genes at the single-cell level is intrinsically stochastic and noisy. Yet, on the cell population level, a subset of genes traditionally referred to as houseke...
Autores principales: | Lin, Yingxin, Ghazanfar, Shila, Strbenac, Dario, Wang, Andy, Patrick, Ellis, Lin, David M, Speed, Terence, Yang, Jean Y H, Yang, Pengyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748759/ https://www.ncbi.nlm.nih.gov/pubmed/31531674 http://dx.doi.org/10.1093/gigascience/giz106 |
Ejemplares similares
-
Benchmarking of analytical combinations for COVID-19 outcome prediction using single-cell RNA sequencing data
por: Cao, Yue, et al.
Publicado: (2023) -
Investigating higher order interactions in single cell data with scHOT
por: Ghazanfar, Shila, et al.
Publicado: (2020) -
scClassify: sample size estimation and multiscale classification of cells using single and multiple reference
por: Lin, Yingxin, et al.
Publicado: (2020) -
scFeatures: multi-view representations of single-cell and spatial data for disease outcome prediction
por: Cao, Yue, et al.
Publicado: (2022) -
Gene regulatory network reconstruction: harnessing the power of single-cell multi-omic data
por: Kim, Daniel, et al.
Publicado: (2023)