Cargando…

Identification, Functional Characterization, and Pharmacological Analysis of Two Sulfakinin Receptors in the Medically-Important Insect Rhodnius prolixus

The chordate gastrin/cholecystokinin and ecdysozoan sulfakinin (SK)-signaling systems are functionally and structurally homologous. In the present study, we isolated the cDNA sequences encoding the SK receptors in Rhodnius prolixus (Rhopr-SKR-1 and Rhopr-SKR-2). The Rhopr-SKRs have been functionally...

Descripción completa

Detalles Bibliográficos
Autores principales: Bloom, Mark, Lange, Angela B., Orchard, Ian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748952/
https://www.ncbi.nlm.nih.gov/pubmed/31530854
http://dx.doi.org/10.1038/s41598-019-49790-x
Descripción
Sumario:The chordate gastrin/cholecystokinin and ecdysozoan sulfakinin (SK)-signaling systems are functionally and structurally homologous. In the present study, we isolated the cDNA sequences encoding the SK receptors in Rhodnius prolixus (Rhopr-SKR-1 and Rhopr-SKR-2). The Rhopr-SKRs have been functionally characterized and their intracellular signaling pathways analysed via a functional receptor assay. Both Rhopr-SKRs are exclusively activated via the two native R. prolixus sulfakinins, Rhopr-SK-1 and Rhopr-SK-2, but not via nonsulfated Rhopr-SK-1. The Rhopr-SKRs are each linked to the intracellular Ca(2+) second messenger pathway, and not to the cyclic AMP pathway. Spatial transcript expression analyses revealed that each Rhopr-SKR is predominantly expressed in the central nervous system with lower expression throughout peripheral tissues. The critical importance of the SK-signaling pathway in the blood-feeding behaviour of R. prolixus was demonstrated by knockdown of the transcripts for Rhopr-SKs and Rhopr-SKRs, which results in an increase in the mass of blood meal taken. The parasite causing Chagas disease is transmitted to the host after R. prolixus has taken a blood meal, and characterization of the SKRs provides further understanding of the coordination of feeding and satiation, and ultimately the transmission of the parasite.