Cargando…

Low-frequency perfect sound absorption achieved by a modulus-near-zero metamaterial

We have analytically proposed a mechanism for achieving a perfect absorber by a modulus-near-zero (MNZ) metamaterial with a properly decorated imaginary part, in which the perfect absorption (PA) is derived from the proved destructive interference. Based on the analysis, an ultrathin acoustic metama...

Descripción completa

Detalles Bibliográficos
Autores principales: Shao, Chen, Long, Houyou, Cheng, Ying, Liu, Xiaojun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748985/
https://www.ncbi.nlm.nih.gov/pubmed/31530878
http://dx.doi.org/10.1038/s41598-019-49982-5
Descripción
Sumario:We have analytically proposed a mechanism for achieving a perfect absorber by a modulus-near-zero (MNZ) metamaterial with a properly decorated imaginary part, in which the perfect absorption (PA) is derived from the proved destructive interference. Based on the analysis, an ultrathin acoustic metamaterial supporting monopolar resonance at 157 Hz (with a wavelength about 28 times of the metamaterial thickness) has been devised to construct an absorber for low-frequency sound. The imaginary part of its effective modulus can be easily tuned by attentively controlling the dissipative loss to achieve PA. Moreover, we have also conducted the experimental measurement in impedance tube, and the result is of great consistency with that of analytical and simulated ones. Our work provides a feasible approach to realize PA (>99%) at low frequency with a deep-wavelength dimension which may promote acoustic metamaterials to practical engineering applications in noise control.