Cargando…
Low-frequency perfect sound absorption achieved by a modulus-near-zero metamaterial
We have analytically proposed a mechanism for achieving a perfect absorber by a modulus-near-zero (MNZ) metamaterial with a properly decorated imaginary part, in which the perfect absorption (PA) is derived from the proved destructive interference. Based on the analysis, an ultrathin acoustic metama...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748985/ https://www.ncbi.nlm.nih.gov/pubmed/31530878 http://dx.doi.org/10.1038/s41598-019-49982-5 |
Sumario: | We have analytically proposed a mechanism for achieving a perfect absorber by a modulus-near-zero (MNZ) metamaterial with a properly decorated imaginary part, in which the perfect absorption (PA) is derived from the proved destructive interference. Based on the analysis, an ultrathin acoustic metamaterial supporting monopolar resonance at 157 Hz (with a wavelength about 28 times of the metamaterial thickness) has been devised to construct an absorber for low-frequency sound. The imaginary part of its effective modulus can be easily tuned by attentively controlling the dissipative loss to achieve PA. Moreover, we have also conducted the experimental measurement in impedance tube, and the result is of great consistency with that of analytical and simulated ones. Our work provides a feasible approach to realize PA (>99%) at low frequency with a deep-wavelength dimension which may promote acoustic metamaterials to practical engineering applications in noise control. |
---|