Cargando…
Neural JNK3 regulates blood flow recovery after hindlimb ischemia in mice via an Egr1/Creb1 axis
Diseases related to impaired blood flow such as peripheral artery disease (PAD) impact nearly 10 million people in the United States alone, yet patients with clinical manifestations of PAD (e.g., claudication and limb ischemia) have limited treatment options. In ischemic tissues, stress kinases such...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748991/ https://www.ncbi.nlm.nih.gov/pubmed/31530804 http://dx.doi.org/10.1038/s41467-019-11982-4 |
_version_ | 1783452184258543616 |
---|---|
author | Kant, Shashi Craige, Siobhan M. Chen, Kai Reif, Michaella M. Learnard, Heather Kelly, Mark Caliz, Amada D. Tran, Khanh-Van Ramo, Kasmir Peters, Owen M. Freeman, Marc Davis, Roger J. Keaney, John F. |
author_facet | Kant, Shashi Craige, Siobhan M. Chen, Kai Reif, Michaella M. Learnard, Heather Kelly, Mark Caliz, Amada D. Tran, Khanh-Van Ramo, Kasmir Peters, Owen M. Freeman, Marc Davis, Roger J. Keaney, John F. |
author_sort | Kant, Shashi |
collection | PubMed |
description | Diseases related to impaired blood flow such as peripheral artery disease (PAD) impact nearly 10 million people in the United States alone, yet patients with clinical manifestations of PAD (e.g., claudication and limb ischemia) have limited treatment options. In ischemic tissues, stress kinases such as c-Jun N-terminal kinases (JNKs), are activated. Here, we show that inhibition of the JNK3 (Mapk10) in the neural compartment strikingly potentiates blood flow recovery from mouse hindlimb ischemia. JNK3 deficiency leads to upregulation of growth factors such as Vegfa, Pdgfb, Pgf, Hbegf and Tgfb3 in ischemic muscle by activation of the transcription factors Egr1/Creb1. JNK3 acts through Forkhead box O3 (Foxo3a) to suppress the activity of Egr1/Creb1 transcription regulators in vitro. In JNK3-deficient cells, Foxo3a is suppressed which leads to Egr1/Creb1 activation and upregulation of downstream growth factors. Collectively, these data suggest that the JNK3-Foxo3a-Egr1/Creb1 axis coordinates the vascular remodeling response in peripheral ischemia. |
format | Online Article Text |
id | pubmed-6748991 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-67489912019-09-19 Neural JNK3 regulates blood flow recovery after hindlimb ischemia in mice via an Egr1/Creb1 axis Kant, Shashi Craige, Siobhan M. Chen, Kai Reif, Michaella M. Learnard, Heather Kelly, Mark Caliz, Amada D. Tran, Khanh-Van Ramo, Kasmir Peters, Owen M. Freeman, Marc Davis, Roger J. Keaney, John F. Nat Commun Article Diseases related to impaired blood flow such as peripheral artery disease (PAD) impact nearly 10 million people in the United States alone, yet patients with clinical manifestations of PAD (e.g., claudication and limb ischemia) have limited treatment options. In ischemic tissues, stress kinases such as c-Jun N-terminal kinases (JNKs), are activated. Here, we show that inhibition of the JNK3 (Mapk10) in the neural compartment strikingly potentiates blood flow recovery from mouse hindlimb ischemia. JNK3 deficiency leads to upregulation of growth factors such as Vegfa, Pdgfb, Pgf, Hbegf and Tgfb3 in ischemic muscle by activation of the transcription factors Egr1/Creb1. JNK3 acts through Forkhead box O3 (Foxo3a) to suppress the activity of Egr1/Creb1 transcription regulators in vitro. In JNK3-deficient cells, Foxo3a is suppressed which leads to Egr1/Creb1 activation and upregulation of downstream growth factors. Collectively, these data suggest that the JNK3-Foxo3a-Egr1/Creb1 axis coordinates the vascular remodeling response in peripheral ischemia. Nature Publishing Group UK 2019-09-17 /pmc/articles/PMC6748991/ /pubmed/31530804 http://dx.doi.org/10.1038/s41467-019-11982-4 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Kant, Shashi Craige, Siobhan M. Chen, Kai Reif, Michaella M. Learnard, Heather Kelly, Mark Caliz, Amada D. Tran, Khanh-Van Ramo, Kasmir Peters, Owen M. Freeman, Marc Davis, Roger J. Keaney, John F. Neural JNK3 regulates blood flow recovery after hindlimb ischemia in mice via an Egr1/Creb1 axis |
title | Neural JNK3 regulates blood flow recovery after hindlimb ischemia in mice via an Egr1/Creb1 axis |
title_full | Neural JNK3 regulates blood flow recovery after hindlimb ischemia in mice via an Egr1/Creb1 axis |
title_fullStr | Neural JNK3 regulates blood flow recovery after hindlimb ischemia in mice via an Egr1/Creb1 axis |
title_full_unstemmed | Neural JNK3 regulates blood flow recovery after hindlimb ischemia in mice via an Egr1/Creb1 axis |
title_short | Neural JNK3 regulates blood flow recovery after hindlimb ischemia in mice via an Egr1/Creb1 axis |
title_sort | neural jnk3 regulates blood flow recovery after hindlimb ischemia in mice via an egr1/creb1 axis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748991/ https://www.ncbi.nlm.nih.gov/pubmed/31530804 http://dx.doi.org/10.1038/s41467-019-11982-4 |
work_keys_str_mv | AT kantshashi neuraljnk3regulatesbloodflowrecoveryafterhindlimbischemiainmiceviaanegr1creb1axis AT craigesiobhanm neuraljnk3regulatesbloodflowrecoveryafterhindlimbischemiainmiceviaanegr1creb1axis AT chenkai neuraljnk3regulatesbloodflowrecoveryafterhindlimbischemiainmiceviaanegr1creb1axis AT reifmichaellam neuraljnk3regulatesbloodflowrecoveryafterhindlimbischemiainmiceviaanegr1creb1axis AT learnardheather neuraljnk3regulatesbloodflowrecoveryafterhindlimbischemiainmiceviaanegr1creb1axis AT kellymark neuraljnk3regulatesbloodflowrecoveryafterhindlimbischemiainmiceviaanegr1creb1axis AT calizamadad neuraljnk3regulatesbloodflowrecoveryafterhindlimbischemiainmiceviaanegr1creb1axis AT trankhanhvan neuraljnk3regulatesbloodflowrecoveryafterhindlimbischemiainmiceviaanegr1creb1axis AT ramokasmir neuraljnk3regulatesbloodflowrecoveryafterhindlimbischemiainmiceviaanegr1creb1axis AT petersowenm neuraljnk3regulatesbloodflowrecoveryafterhindlimbischemiainmiceviaanegr1creb1axis AT freemanmarc neuraljnk3regulatesbloodflowrecoveryafterhindlimbischemiainmiceviaanegr1creb1axis AT davisrogerj neuraljnk3regulatesbloodflowrecoveryafterhindlimbischemiainmiceviaanegr1creb1axis AT keaneyjohnf neuraljnk3regulatesbloodflowrecoveryafterhindlimbischemiainmiceviaanegr1creb1axis |