Cargando…

Neural JNK3 regulates blood flow recovery after hindlimb ischemia in mice via an Egr1/Creb1 axis

Diseases related to impaired blood flow such as peripheral artery disease (PAD) impact nearly 10 million people in the United States alone, yet patients with clinical manifestations of PAD (e.g., claudication and limb ischemia) have limited treatment options. In ischemic tissues, stress kinases such...

Descripción completa

Detalles Bibliográficos
Autores principales: Kant, Shashi, Craige, Siobhan M., Chen, Kai, Reif, Michaella M., Learnard, Heather, Kelly, Mark, Caliz, Amada D., Tran, Khanh-Van, Ramo, Kasmir, Peters, Owen M., Freeman, Marc, Davis, Roger J., Keaney, John F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748991/
https://www.ncbi.nlm.nih.gov/pubmed/31530804
http://dx.doi.org/10.1038/s41467-019-11982-4
_version_ 1783452184258543616
author Kant, Shashi
Craige, Siobhan M.
Chen, Kai
Reif, Michaella M.
Learnard, Heather
Kelly, Mark
Caliz, Amada D.
Tran, Khanh-Van
Ramo, Kasmir
Peters, Owen M.
Freeman, Marc
Davis, Roger J.
Keaney, John F.
author_facet Kant, Shashi
Craige, Siobhan M.
Chen, Kai
Reif, Michaella M.
Learnard, Heather
Kelly, Mark
Caliz, Amada D.
Tran, Khanh-Van
Ramo, Kasmir
Peters, Owen M.
Freeman, Marc
Davis, Roger J.
Keaney, John F.
author_sort Kant, Shashi
collection PubMed
description Diseases related to impaired blood flow such as peripheral artery disease (PAD) impact nearly 10 million people in the United States alone, yet patients with clinical manifestations of PAD (e.g., claudication and limb ischemia) have limited treatment options. In ischemic tissues, stress kinases such as c-Jun N-terminal kinases (JNKs), are activated. Here, we show that inhibition of the JNK3 (Mapk10) in the neural compartment strikingly potentiates blood flow recovery from mouse hindlimb ischemia. JNK3 deficiency leads to upregulation of growth factors such as Vegfa, Pdgfb, Pgf, Hbegf and Tgfb3 in ischemic muscle by activation of the transcription factors Egr1/Creb1. JNK3 acts through Forkhead box O3 (Foxo3a) to suppress the activity of Egr1/Creb1 transcription regulators in vitro. In JNK3-deficient cells, Foxo3a is suppressed which leads to Egr1/Creb1 activation and upregulation of downstream growth factors. Collectively, these data suggest that the JNK3-Foxo3a-Egr1/Creb1 axis coordinates the vascular remodeling response in peripheral ischemia.
format Online
Article
Text
id pubmed-6748991
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-67489912019-09-19 Neural JNK3 regulates blood flow recovery after hindlimb ischemia in mice via an Egr1/Creb1 axis Kant, Shashi Craige, Siobhan M. Chen, Kai Reif, Michaella M. Learnard, Heather Kelly, Mark Caliz, Amada D. Tran, Khanh-Van Ramo, Kasmir Peters, Owen M. Freeman, Marc Davis, Roger J. Keaney, John F. Nat Commun Article Diseases related to impaired blood flow such as peripheral artery disease (PAD) impact nearly 10 million people in the United States alone, yet patients with clinical manifestations of PAD (e.g., claudication and limb ischemia) have limited treatment options. In ischemic tissues, stress kinases such as c-Jun N-terminal kinases (JNKs), are activated. Here, we show that inhibition of the JNK3 (Mapk10) in the neural compartment strikingly potentiates blood flow recovery from mouse hindlimb ischemia. JNK3 deficiency leads to upregulation of growth factors such as Vegfa, Pdgfb, Pgf, Hbegf and Tgfb3 in ischemic muscle by activation of the transcription factors Egr1/Creb1. JNK3 acts through Forkhead box O3 (Foxo3a) to suppress the activity of Egr1/Creb1 transcription regulators in vitro. In JNK3-deficient cells, Foxo3a is suppressed which leads to Egr1/Creb1 activation and upregulation of downstream growth factors. Collectively, these data suggest that the JNK3-Foxo3a-Egr1/Creb1 axis coordinates the vascular remodeling response in peripheral ischemia. Nature Publishing Group UK 2019-09-17 /pmc/articles/PMC6748991/ /pubmed/31530804 http://dx.doi.org/10.1038/s41467-019-11982-4 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Kant, Shashi
Craige, Siobhan M.
Chen, Kai
Reif, Michaella M.
Learnard, Heather
Kelly, Mark
Caliz, Amada D.
Tran, Khanh-Van
Ramo, Kasmir
Peters, Owen M.
Freeman, Marc
Davis, Roger J.
Keaney, John F.
Neural JNK3 regulates blood flow recovery after hindlimb ischemia in mice via an Egr1/Creb1 axis
title Neural JNK3 regulates blood flow recovery after hindlimb ischemia in mice via an Egr1/Creb1 axis
title_full Neural JNK3 regulates blood flow recovery after hindlimb ischemia in mice via an Egr1/Creb1 axis
title_fullStr Neural JNK3 regulates blood flow recovery after hindlimb ischemia in mice via an Egr1/Creb1 axis
title_full_unstemmed Neural JNK3 regulates blood flow recovery after hindlimb ischemia in mice via an Egr1/Creb1 axis
title_short Neural JNK3 regulates blood flow recovery after hindlimb ischemia in mice via an Egr1/Creb1 axis
title_sort neural jnk3 regulates blood flow recovery after hindlimb ischemia in mice via an egr1/creb1 axis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748991/
https://www.ncbi.nlm.nih.gov/pubmed/31530804
http://dx.doi.org/10.1038/s41467-019-11982-4
work_keys_str_mv AT kantshashi neuraljnk3regulatesbloodflowrecoveryafterhindlimbischemiainmiceviaanegr1creb1axis
AT craigesiobhanm neuraljnk3regulatesbloodflowrecoveryafterhindlimbischemiainmiceviaanegr1creb1axis
AT chenkai neuraljnk3regulatesbloodflowrecoveryafterhindlimbischemiainmiceviaanegr1creb1axis
AT reifmichaellam neuraljnk3regulatesbloodflowrecoveryafterhindlimbischemiainmiceviaanegr1creb1axis
AT learnardheather neuraljnk3regulatesbloodflowrecoveryafterhindlimbischemiainmiceviaanegr1creb1axis
AT kellymark neuraljnk3regulatesbloodflowrecoveryafterhindlimbischemiainmiceviaanegr1creb1axis
AT calizamadad neuraljnk3regulatesbloodflowrecoveryafterhindlimbischemiainmiceviaanegr1creb1axis
AT trankhanhvan neuraljnk3regulatesbloodflowrecoveryafterhindlimbischemiainmiceviaanegr1creb1axis
AT ramokasmir neuraljnk3regulatesbloodflowrecoveryafterhindlimbischemiainmiceviaanegr1creb1axis
AT petersowenm neuraljnk3regulatesbloodflowrecoveryafterhindlimbischemiainmiceviaanegr1creb1axis
AT freemanmarc neuraljnk3regulatesbloodflowrecoveryafterhindlimbischemiainmiceviaanegr1creb1axis
AT davisrogerj neuraljnk3regulatesbloodflowrecoveryafterhindlimbischemiainmiceviaanegr1creb1axis
AT keaneyjohnf neuraljnk3regulatesbloodflowrecoveryafterhindlimbischemiainmiceviaanegr1creb1axis