Cargando…
Theories and Methods for Labeling Cognitive Workload: Classification and Transfer Learning
There are a number of key data-centric questions that must be answered when developing classifiers for operator functional states. “Should a supervised or unsupervised learning approach be used? What degree of labeling and transformation must be performed on the data? What are the trade-offs between...
Autores principales: | McKendrick, Ryan, Feest, Bradley, Harwood, Amanda, Falcone, Brian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749052/ https://www.ncbi.nlm.nih.gov/pubmed/31572146 http://dx.doi.org/10.3389/fnhum.2019.00295 |
Ejemplares similares
-
Cognitive Workload and Workload Transitions Elicit Curvilinear Hemodynamics During Spatial Working Memory
por: McKendrick, Ryan, et al.
Publicado: (2019) -
Effects of Transcranial Direct Current Stimulation on Baseline and Slope of Prefrontal Cortex Hemodynamics During a Spatial Working Memory Task
por: McKendrick, Ryan, et al.
Publicado: (2020) -
Multisubject “Learning” for Mental Workload Classification Using Concurrent EEG, fNIRS, and Physiological Measures
por: Liu, Yichuan, et al.
Publicado: (2017) -
Perceived Mental Workload Classification Using Intermediate Fusion Multimodal Deep Learning
por: Dolmans, Tenzing C., et al.
Publicado: (2021) -
Cognitive task analysis and workload classification
por: Knisely, Benjamin M., et al.
Publicado: (2021)