Cargando…
Cell Type Classification and Unsupervised Morphological Phenotyping From Low-Resolution Images Using Deep Learning
Convolutional neural networks (ConvNets) have proven to be successful in both the classification and semantic segmentation of cell images. Here we establish a method for cell type classification utilizing images taken with a benchtop microscope directly from cell culture flasks, eliminating the need...
Autores principales: | Yao, Kai, Rochman, Nash D., Sun, Sean X. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749053/ https://www.ncbi.nlm.nih.gov/pubmed/31530889 http://dx.doi.org/10.1038/s41598-019-50010-9 |
Ejemplares similares
-
Phenotyping urban built and natural environments with high-resolution satellite images and unsupervised deep learning
por: Metzler, A Barbara, et al.
Publicado: (2023) -
Deep Unsupervised Fusion Learning for Hyperspectral Image Super Resolution
por: Liu, Zhe, et al.
Publicado: (2021) -
Meibography Phenotyping and Classification From Unsupervised Discriminative Feature Learning
por: Yeh, Chun-Hsiao, et al.
Publicado: (2021) -
A Strictly Unsupervised Deep Learning Method for HEp-2 Cell Image Classification
por: Vununu, Caleb, et al.
Publicado: (2020) -
SRAS‐net: Low‐resolution chromosome image classification based on deep learning
por: Liu, Xiangbin, et al.
Publicado: (2022)