Cargando…

Intelligent Framework for Learning Physics with Aikido (Martial Art) and Registered Sensors

Physics is considered a tough academic subject by learners. To leverage engagement in the learning of this STEM area, teachers try to come up with creative ideas about the design of their classroom lessons. Sports-related activities can foster intuitive knowledge about physics (gravity, speed, accel...

Descripción completa

Detalles Bibliográficos
Autores principales: Corbi, Alberto, Santos, Olga C., Burgos, Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749188/
https://www.ncbi.nlm.nih.gov/pubmed/31450624
http://dx.doi.org/10.3390/s19173681
Descripción
Sumario:Physics is considered a tough academic subject by learners. To leverage engagement in the learning of this STEM area, teachers try to come up with creative ideas about the design of their classroom lessons. Sports-related activities can foster intuitive knowledge about physics (gravity, speed, acceleration, etc.). In this context, martial arts also provide a novel way of visualizing these ideas when performing the predefined motions needed to master the associated techniques. The recent availability of cheap monitoring hardware (accelerometers, cameras, etc.) allows an easy tracking of the aforementioned movements, which in the case of aikido, usually involve genuine circular motions. In this paper, we begin by reporting a user study among high-school students showing that the physics concept of moment of inertia can be understood by watching live exhibitions of specific aikido techniques. Based on these findings, we later present Phy + Aik, a tool for educators that enables the production of innovative visual educational material consisting of high-quality videos (and live demonstrations) synchronized/tagged with the inertial data collected by sensors and visual tracking devices. We think that a similar approach, where sensors are automatically registered within an intelligent framework, can be explored to teach other difficult-to-learn STEM concepts.