Cargando…
Wasserstein Distance Learns Domain Invariant Feature Representations for Drift Compensation of E-Nose
Electronic nose (E-nose), a kind of instrument which combines with the gas sensor and the corresponding pattern recognition algorithm, is used to detect the type and concentration of gases. However, the sensor drift will occur in realistic application scenario of E-nose, which makes a variation of d...
Autores principales: | Tao, Yang, Li, Chunyan, Liang, Zhifang, Yang, Haocheng, Xu, Juan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749200/ https://www.ncbi.nlm.nih.gov/pubmed/31454980 http://dx.doi.org/10.3390/s19173703 |
Ejemplares similares
-
Domain Correction Based on Kernel Transformation for Drift Compensation in the E-Nose System
por: Tao, Yang, et al.
Publicado: (2018) -
Cross-Domain Active Learning for Electronic Nose Drift Compensation
por: Sun, Fangyu, et al.
Publicado: (2022) -
Correcting nuisance variation using Wasserstein distance
por: Tabak, Gil, et al.
Publicado: (2020) -
Online Sensor Drift Compensation for E-Nose Systems Using Domain Adaptation and Extreme Learning Machine
por: Ma, Zhiyuan, et al.
Publicado: (2018) -
Active Learning on Dynamic Clustering for Drift Compensation in an Electronic Nose System
por: Liu, Tao, et al.
Publicado: (2019)