Cargando…
Multi-Sensor Fusion for Activity Recognition—A Survey
In Ambient Intelligence (AmI), the activity a user is engaged in is an essential part of the context, so its recognition is of paramount importance for applications in areas like sports, medicine, personal safety, and so forth. The concurrent use of multiple sensors for recognition of human activiti...
Autores principales: | Aguileta, Antonio A., Brena, Ramon F., Mayora, Oscar, Molino-Minero-Re, Erik, Trejo, Luis A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749203/ https://www.ncbi.nlm.nih.gov/pubmed/31484423 http://dx.doi.org/10.3390/s19173808 |
Ejemplares similares
-
Choosing the Best Sensor Fusion Method: A Machine-Learning Approach
por: Brena, Ramon F., et al.
Publicado: (2020) -
Virtual Sensors for Optimal Integration of Human Activity Data
por: Aguileta, Antonio A., et al.
Publicado: (2019) -
Improved Accuracy in Predicting the Best Sensor Fusion Architecture for Multiple Domains
por: Molino-Minero-Re, Erik, et al.
Publicado: (2021) -
Facial Expression Recognition from Multi-Perspective Visual Inputs and Soft Voting
por: Aguileta, Antonio A., et al.
Publicado: (2022) -
Interpretable Passive Multi-Modal Sensor Fusion for Human Identification and Activity Recognition
por: Yuan, Liangqi, et al.
Publicado: (2022)