Cargando…
Real-Time Maritime Traffic Anomaly Detection Based on Sensors and History Data Embedding
The automated identification system of vessel movements receives a huge amount of multivariate, heterogeneous sensor data, which should be analyzed to make a proper and timely decision on vessel movements. The large number of vessels makes it difficult and time-consuming to detect abnormalities, thu...
Autores principales: | Venskus, Julius, Treigys, Povilas, Bernatavičienė, Jolita, Tamulevičius, Gintautas, Medvedev, Viktor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749247/ https://www.ncbi.nlm.nih.gov/pubmed/31480449 http://dx.doi.org/10.3390/s19173782 |
Ejemplares similares
-
Data science
por: Dzemyda, Gintautas, et al.
Publicado: (2020) -
Explainable Anomaly Detection Framework for Maritime Main Engine Sensor Data
por: Kim, Donghyun, et al.
Publicado: (2021) -
Real-Time Instance Segmentation of Traffic Videos for Embedded Devices
por: Panero Martinez, Ruben, et al.
Publicado: (2021) -
Adaptive Information Visualization for Maritime Traffic Stream Sensor Data with Parallel Context Acquisition and Machine Learning
por: Kim, Kwang-il, et al.
Publicado: (2019) -
Tumor collagen framework from bright-field histology images predicts overall survival of breast carcinoma patients
por: Morkunas, Mindaugas, et al.
Publicado: (2021)