Cargando…
Spectroscopic Technique-Based Comparative Investigation on the Interaction of Theaflavins with Native and Glycated Human Serum Albumin
Theaflavin is a kind of multi-pharmacological and health beneficial black tea factor. The aim of this study is to investigate the mechanisms by which theaflavin interacts with glycosylated and non-glycosylated serum albumins and compares their binding properties. Fluorescence and ultraviolet spectra...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749253/ https://www.ncbi.nlm.nih.gov/pubmed/31480459 http://dx.doi.org/10.3390/molecules24173171 |
_version_ | 1783452234814586880 |
---|---|
author | Xu, Jinhui Wang, Mengyuan Zheng, Yizhe Tang, Lin |
author_facet | Xu, Jinhui Wang, Mengyuan Zheng, Yizhe Tang, Lin |
author_sort | Xu, Jinhui |
collection | PubMed |
description | Theaflavin is a kind of multi-pharmacological and health beneficial black tea factor. The aim of this study is to investigate the mechanisms by which theaflavin interacts with glycosylated and non-glycosylated serum albumins and compares their binding properties. Fluorescence and ultraviolet spectra indicated that theaflavin interacted with native and glycated human serum albumin through a static quenching mechanism and had a higher degree of quenching of human serum albumin. The thermodynamic parameters revealed that the combinations of theaflavin with native and glycated human serum albumin were a spontaneous endothermic reaction, and the hydrophobic force was a major driving force in the interaction process. Zeta potential, particle size, synchronous fluorescence, three-dimensional fluorescence spectroscopy and circular dichroism further clarified the effect of theaflavin on the conformation of human serum albumin structure were more pronounced. In addition, site competition experiments and molecular docking technique confirmed that the binding sites of theaflavin on both native and glycated human serum albumin were bound at site II. This study had investigated the effects of glycation on the binding of HSA with polyphenols and the potential nutriology significance of these effects. |
format | Online Article Text |
id | pubmed-6749253 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-67492532019-09-27 Spectroscopic Technique-Based Comparative Investigation on the Interaction of Theaflavins with Native and Glycated Human Serum Albumin Xu, Jinhui Wang, Mengyuan Zheng, Yizhe Tang, Lin Molecules Article Theaflavin is a kind of multi-pharmacological and health beneficial black tea factor. The aim of this study is to investigate the mechanisms by which theaflavin interacts with glycosylated and non-glycosylated serum albumins and compares their binding properties. Fluorescence and ultraviolet spectra indicated that theaflavin interacted with native and glycated human serum albumin through a static quenching mechanism and had a higher degree of quenching of human serum albumin. The thermodynamic parameters revealed that the combinations of theaflavin with native and glycated human serum albumin were a spontaneous endothermic reaction, and the hydrophobic force was a major driving force in the interaction process. Zeta potential, particle size, synchronous fluorescence, three-dimensional fluorescence spectroscopy and circular dichroism further clarified the effect of theaflavin on the conformation of human serum albumin structure were more pronounced. In addition, site competition experiments and molecular docking technique confirmed that the binding sites of theaflavin on both native and glycated human serum albumin were bound at site II. This study had investigated the effects of glycation on the binding of HSA with polyphenols and the potential nutriology significance of these effects. MDPI 2019-08-31 /pmc/articles/PMC6749253/ /pubmed/31480459 http://dx.doi.org/10.3390/molecules24173171 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Xu, Jinhui Wang, Mengyuan Zheng, Yizhe Tang, Lin Spectroscopic Technique-Based Comparative Investigation on the Interaction of Theaflavins with Native and Glycated Human Serum Albumin |
title | Spectroscopic Technique-Based Comparative Investigation on the Interaction of Theaflavins with Native and Glycated Human Serum Albumin |
title_full | Spectroscopic Technique-Based Comparative Investigation on the Interaction of Theaflavins with Native and Glycated Human Serum Albumin |
title_fullStr | Spectroscopic Technique-Based Comparative Investigation on the Interaction of Theaflavins with Native and Glycated Human Serum Albumin |
title_full_unstemmed | Spectroscopic Technique-Based Comparative Investigation on the Interaction of Theaflavins with Native and Glycated Human Serum Albumin |
title_short | Spectroscopic Technique-Based Comparative Investigation on the Interaction of Theaflavins with Native and Glycated Human Serum Albumin |
title_sort | spectroscopic technique-based comparative investigation on the interaction of theaflavins with native and glycated human serum albumin |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749253/ https://www.ncbi.nlm.nih.gov/pubmed/31480459 http://dx.doi.org/10.3390/molecules24173171 |
work_keys_str_mv | AT xujinhui spectroscopictechniquebasedcomparativeinvestigationontheinteractionoftheaflavinswithnativeandglycatedhumanserumalbumin AT wangmengyuan spectroscopictechniquebasedcomparativeinvestigationontheinteractionoftheaflavinswithnativeandglycatedhumanserumalbumin AT zhengyizhe spectroscopictechniquebasedcomparativeinvestigationontheinteractionoftheaflavinswithnativeandglycatedhumanserumalbumin AT tanglin spectroscopictechniquebasedcomparativeinvestigationontheinteractionoftheaflavinswithnativeandglycatedhumanserumalbumin |