Cargando…
Detection of Human Fall Using Floor Vibration and Multi-Features Semi-Supervised SVM
Human falls are the premier cause of fatal and nonfatal injuries among older adults. The health outcome of a fall event is largely dependent on rapid response and rescue of the fallen elder. Being able to provide an accurate and fast fall detection will dramatically improve the health outcomes of th...
Autores principales: | Liu, Chengyin, Jiang, Zhaoshuo, Su, Xiangxiang, Benzoni, Samuel, Maxwell, Alec |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749303/ https://www.ncbi.nlm.nih.gov/pubmed/31466268 http://dx.doi.org/10.3390/s19173720 |
Ejemplares similares
-
Correction: Liu et al. Detection of Human Fall Using Floor Vibration and Multi-Features Semi-Supervised SVM. Sensors 2019, 19, 3720
por: Liu, Chengyin, et al.
Publicado: (2021) -
Feasibility of Using Floor Vibration to Detect Human Falls
por: Shao, Yu, et al.
Publicado: (2020) -
A Combined One-Class SVM and Template-Matching Approach for User-Aided Human Fall Detection by Means of Floor Acoustic Features
por: Droghini, Diego, et al.
Publicado: (2017) -
A semi-supervised boosting SVM for predicting hot spots at protein-protein Interfaces
por: Xu, Bin, et al.
Publicado: (2012) -
CompareSVM: supervised, Support Vector Machine (SVM) inference of gene regularity networks
por: Gillani, Zeeshan, et al.
Publicado: (2014)