Cargando…
Time Coherent Full-Body Poses Estimated Using Only Five Inertial Sensors: Deep versus Shallow Learning
Full-body motion capture typically requires sensors/markers to be placed on each rigid body segment, which results in long setup times and is obtrusive. The number of sensors/markers can be reduced using deep learning or offline methods. However, this requires large training datasets and/or sufficie...
Autores principales: | Wouda, Frank J., Giuberti, Matteo, Rudigkeit, Nina, van Beijnum, Bert-Jan F., Poel, Mannes, Veltink, Peter H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749312/ https://www.ncbi.nlm.nih.gov/pubmed/31461958 http://dx.doi.org/10.3390/s19173716 |
Ejemplares similares
-
Estimation of Full-Body Poses Using Only Five Inertial Sensors: An Eager or Lazy Learning Approach?
por: Wouda, Frank J., et al.
Publicado: (2016) -
Estimation of Vertical Ground Reaction Forces and Sagittal Knee Kinematics During Running Using Three Inertial Sensors
por: Wouda, Frank J., et al.
Publicado: (2018) -
Foot progression angle estimation using a single foot-worn inertial sensor
por: Wouda, Frank J., et al.
Publicado: (2021) -
Automatic identification of inertial sensor placement on human body segments during walking
por: Weenk, Dirk, et al.
Publicado: (2013) -
Faster Deep Inertial Pose Estimation with Six Inertial Sensors
por: Xia, Di, et al.
Publicado: (2022)