Cargando…
WHSP-Net: A Weakly-Supervised Approach for 3D Hand Shape and Pose Recovery from a Single Depth Image
Hand shape and pose recovery is essential for many computer vision applications such as animation of a personalized hand mesh in a virtual environment. Although there are many hand pose estimation methods, only a few deep learning based algorithms target 3D hand shape and pose from a single RGB or d...
Autores principales: | Malik, Jameel, Elhayek, Ahmed, Stricker, Didier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749339/ https://www.ncbi.nlm.nih.gov/pubmed/31480461 http://dx.doi.org/10.3390/s19173784 |
Ejemplares similares
-
Real-Time Energy Efficient Hand Pose Estimation: A Case Study
por: Al Koutayni, Mhd Rashed, et al.
Publicado: (2020) -
3DAirSig: A Framework for Enabling In-Air Signatures Using a Multi-Modal Depth Sensor
por: Malik, Jameel, et al.
Publicado: (2018) -
Structure from Articulated Motion: Accurate and Stable Monocular 3D Reconstruction without Training Data
por: Kovalenko, Onorina, et al.
Publicado: (2019) -
CrossFuNet: RGB and Depth Cross-Fusion Network for Hand Pose Estimation
por: Sun, Xiaojing, et al.
Publicado: (2021) -
Pose ResNet: 3D Human Pose Estimation Based on Self-Supervision
por: Bao, Wenxia, et al.
Publicado: (2023)