Cargando…
Pre-Impact Detection Algorithm to Identify Tripping Events Using Wearable Sensors
This study aimed to investigate the performance of an updated version of our pre-impact detection algorithm parsing out the output of a set of Inertial Measurement Units (IMUs) placed on lower limbs and designed to recognize signs of lack of balance due to tripping. Eight young subjects were asked t...
Autores principales: | Aprigliano, Federica, Micera, Silvestro, Monaco, Vito |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749342/ https://www.ncbi.nlm.nih.gov/pubmed/31461908 http://dx.doi.org/10.3390/s19173713 |
Ejemplares similares
-
Ambulatory Assessment of the Dynamic Margin of Stability Using an Inertial Sensor Network
por: Guaitolini, Michelangelo, et al.
Publicado: (2019) -
Pre-Impact Fall Detection: Optimal Sensor Positioning Based on a Machine Learning Paradigm
por: Martelli, Dario, et al.
Publicado: (2014) -
Effects of repeated waist-pull perturbations on gait stability in subjects with cerebellar ataxia
por: Aprigliano, Federica, et al.
Publicado: (2019) -
Detection of Real-World Trips in At-Fall Risk Community Dwelling Older Adults Using Wearable Sensors
por: Handelzalts, Shirley, et al.
Publicado: (2020) -
A Large-Scale Open Motion Dataset (KFall) and Benchmark Algorithms for Detecting Pre-impact Fall of the Elderly Using Wearable Inertial Sensors
por: Yu, Xiaoqun, et al.
Publicado: (2021)