Cargando…

In-Ear Pulse Rate Measurement: A Valid Alternative to Heart Rate Derived from Electrocardiography?

Heart rate measurement has become one of the most widely used methods of monitoring the intensity of physical activity. The purpose of this study was to assess whether in-ear photoplethysmographic (PPG) pulse rate (PR) measurement devices represent a valid alternative to heart rate derived from elec...

Descripción completa

Detalles Bibliográficos
Autores principales: Passler, Stefanie, Müller, Niklas, Senner, Veit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749408/
https://www.ncbi.nlm.nih.gov/pubmed/31438600
http://dx.doi.org/10.3390/s19173641
Descripción
Sumario:Heart rate measurement has become one of the most widely used methods of monitoring the intensity of physical activity. The purpose of this study was to assess whether in-ear photoplethysmographic (PPG) pulse rate (PR) measurement devices represent a valid alternative to heart rate derived from electrocardiography (ECG), which is considered a gold standard. Twenty subjects (6 women, 14 men) completed one trial of graded cycling under laboratory conditions. In the trial, PR was recorded by two commercially available in-ear devices, the Dash Pro and the Cosinuss°One. They were compared to HR measured by a Bodyguard2 ECG. Validity of the in-ear PR measurement devices was tested by ANOVA, mean absolute percentage errors (MAPE), intra-class correlation coefficient (ICC), and Bland–Altman plots. Both devices achieved a MAPE ≤5%. Despite excellent to good levels of agreement, Bland–Altman plots showed that both in-ear devices tend to slightly underestimate the ECG’s HR values. It may be concluded that in-ear PPG PR measurement is a promising technique that shows accurate but imprecise results under controlled conditions. However, PPG PR measurement in the ear is sensitive to motion artefacts. Thus, accuracy and precision of the measured PR depend highly on measurement site, stress situation, and exercise.