Cargando…
Fusion of Video and Inertial Sensing for Deep Learning–Based Human Action Recognition
This paper presents the simultaneous utilization of video images and inertial signals that are captured at the same time via a video camera and a wearable inertial sensor within a fusion framework in order to achieve a more robust human action recognition compared to the situations when each sensing...
Autores principales: | Wei, Haoran, Jafari, Roozbeh, Kehtarnavaz, Nasser |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749419/ https://www.ncbi.nlm.nih.gov/pubmed/31450609 http://dx.doi.org/10.3390/s19173680 |
Ejemplares similares
-
C-MHAD: Continuous Multimodal Human Action Dataset of Simultaneous Video and Inertial Sensing
por: Wei, Haoran, et al.
Publicado: (2020) -
Real-Time Moving Object Detection in High-Resolution Video Sensing
por: Zhu, Haidi, et al.
Publicado: (2020) -
Deep Sensing: Inertial and Ambient Sensing for Activity Context Recognition Using Deep Convolutional Neural Networks
por: Otebolaku, Abayomi, et al.
Publicado: (2020) -
A Review of Deep Learning-Based Contactless Heart Rate Measurement Methods
por: Ni, Aoxin, et al.
Publicado: (2021) -
Histogram of Oriented Gradient-Based Fusion of Features for Human Action Recognition in Action Video Sequences
por: Patel, Chirag I., et al.
Publicado: (2020)