Cargando…
Prediction of Pullout Behavior of Belled Piles through Various Machine Learning Modelling Techniques
The main goal of this study is to estimate the pullout forces by developing various modelling technique like feedforward neural network (FFNN), radial basis functions neural networks (RBNN), general regression neural network (GRNN) and adaptive neuro-fuzzy inference system (ANFIS). A hybrid learning...
Autores principales: | Tien Bui, Dieu, Moayedi, Hossein, Abdullahi, Mu’azu Mohammed, Safuan A Rashid, Ahmad, Nguyen, Hoang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749431/ https://www.ncbi.nlm.nih.gov/pubmed/31450585 http://dx.doi.org/10.3390/s19173678 |
Ejemplares similares
-
Pullout capacity of batter pile in sand
por: Nazir, Ashraf, et al.
Publicado: (2013) -
A Novel Swarm Intelligence—Harris Hawks Optimization for Spatial Assessment of Landslide Susceptibility
por: Bui, Dieu Tien, et al.
Publicado: (2019) -
Evaluation of the Pullout Behavior of Pre-Bored Piles Embedded in Rock
por: Park, Kyungho, et al.
Publicado: (2021) -
Slope Stability Monitoring Using Novel Remote Sensing Based Fuzzy Logic
por: Moayedi, Hossein, et al.
Publicado: (2019) -
Spatial Landslide Susceptibility Assessment Based on Novel Neural-Metaheuristic Geographic Information System Based Ensembles
por: Moayedi, Hossein, et al.
Publicado: (2019)