Cargando…
Sub-Atomic Resolution Crystal Structures Reveal Conserved Geometric Outliers at Functional Sites
Myelin protein 2 (P2) is a peripheral membrane protein of the vertebrate nervous system myelin sheath, having possible roles in both lipid transport and 3D molecular organization of the multilayered myelin membrane. We extended our earlier crystallographic studies on human P2 and refined its crystal...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749445/ https://www.ncbi.nlm.nih.gov/pubmed/31443388 http://dx.doi.org/10.3390/molecules24173044 |
_version_ | 1783452280533549056 |
---|---|
author | Laulumaa, Saara Kursula, Petri |
author_facet | Laulumaa, Saara Kursula, Petri |
author_sort | Laulumaa, Saara |
collection | PubMed |
description | Myelin protein 2 (P2) is a peripheral membrane protein of the vertebrate nervous system myelin sheath, having possible roles in both lipid transport and 3D molecular organization of the multilayered myelin membrane. We extended our earlier crystallographic studies on human P2 and refined its crystal structure at an ultrahigh resolution of 0.72 Å in perdeuterated form and 0.86 Å in hydrogenated form. Characteristic differences in C–H…O hydrogen bond patterns were observed between extended β strands, kinked or ending strands, and helices. Often, side-chain C–H groups engage in hydrogen bonding with backbone carbonyl moieties. The data highlight several amino acid residues with unconventional conformations, including both bent aromatic rings and twisted guanidinium groups on arginine side chains, as well as non-planar peptide bonds. In two locations, such non-ideal conformations cluster, providing proof of local functional strain. Other ultrahigh-resolution protein structures similarly contain chemical groups, which break planarity rules. For example, in Src homology 3 (SH3) domains, a conserved bent aromatic residue is observed near the ligand binding site. Fatty acid binding protein (FABP) 3, belonging to the same family as P2, has several side chains and peptide bonds bent exactly as those in P2. We provide a high-resolution snapshot on non-ideal conformations of amino acid residues under local strain, possibly relevant to biological function. Geometric outliers observed in ultrahigh-resolution protein structures are real and likely relevant for ligand binding and conformational changes. Furthermore, the deuteration of protein and/or solvent are promising variables in protein crystal optimization. |
format | Online Article Text |
id | pubmed-6749445 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-67494452019-09-27 Sub-Atomic Resolution Crystal Structures Reveal Conserved Geometric Outliers at Functional Sites Laulumaa, Saara Kursula, Petri Molecules Article Myelin protein 2 (P2) is a peripheral membrane protein of the vertebrate nervous system myelin sheath, having possible roles in both lipid transport and 3D molecular organization of the multilayered myelin membrane. We extended our earlier crystallographic studies on human P2 and refined its crystal structure at an ultrahigh resolution of 0.72 Å in perdeuterated form and 0.86 Å in hydrogenated form. Characteristic differences in C–H…O hydrogen bond patterns were observed between extended β strands, kinked or ending strands, and helices. Often, side-chain C–H groups engage in hydrogen bonding with backbone carbonyl moieties. The data highlight several amino acid residues with unconventional conformations, including both bent aromatic rings and twisted guanidinium groups on arginine side chains, as well as non-planar peptide bonds. In two locations, such non-ideal conformations cluster, providing proof of local functional strain. Other ultrahigh-resolution protein structures similarly contain chemical groups, which break planarity rules. For example, in Src homology 3 (SH3) domains, a conserved bent aromatic residue is observed near the ligand binding site. Fatty acid binding protein (FABP) 3, belonging to the same family as P2, has several side chains and peptide bonds bent exactly as those in P2. We provide a high-resolution snapshot on non-ideal conformations of amino acid residues under local strain, possibly relevant to biological function. Geometric outliers observed in ultrahigh-resolution protein structures are real and likely relevant for ligand binding and conformational changes. Furthermore, the deuteration of protein and/or solvent are promising variables in protein crystal optimization. MDPI 2019-08-22 /pmc/articles/PMC6749445/ /pubmed/31443388 http://dx.doi.org/10.3390/molecules24173044 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Laulumaa, Saara Kursula, Petri Sub-Atomic Resolution Crystal Structures Reveal Conserved Geometric Outliers at Functional Sites |
title | Sub-Atomic Resolution Crystal Structures Reveal Conserved Geometric Outliers at Functional Sites |
title_full | Sub-Atomic Resolution Crystal Structures Reveal Conserved Geometric Outliers at Functional Sites |
title_fullStr | Sub-Atomic Resolution Crystal Structures Reveal Conserved Geometric Outliers at Functional Sites |
title_full_unstemmed | Sub-Atomic Resolution Crystal Structures Reveal Conserved Geometric Outliers at Functional Sites |
title_short | Sub-Atomic Resolution Crystal Structures Reveal Conserved Geometric Outliers at Functional Sites |
title_sort | sub-atomic resolution crystal structures reveal conserved geometric outliers at functional sites |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749445/ https://www.ncbi.nlm.nih.gov/pubmed/31443388 http://dx.doi.org/10.3390/molecules24173044 |
work_keys_str_mv | AT laulumaasaara subatomicresolutioncrystalstructuresrevealconservedgeometricoutliersatfunctionalsites AT kursulapetri subatomicresolutioncrystalstructuresrevealconservedgeometricoutliersatfunctionalsites |