Cargando…
A Method of Short Text Representation Based on the Feature Probability Embedded Vector
Text representation is one of the key tasks in the field of natural language processing (NLP). Traditional feature extraction and weighting methods often use the bag-of-words (BoW) model, which may lead to a lack of semantic information as well as the problems of high dimensionality and high sparsit...
Autores principales: | Zhou, Wanting, Wang, Hanbin, Sun, Hongguang, Sun, Tieli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749449/ https://www.ncbi.nlm.nih.gov/pubmed/31466389 http://dx.doi.org/10.3390/s19173728 |
Ejemplares similares
-
A Method of Short Text Representation Fusion with Weighted Word Embeddings and Extended Topic Information
por: Liu, Wenfu, et al.
Publicado: (2022) -
A Topic Recognition Method of News Text Based on Word Embedding Enhancement
por: Du, Qiming, et al.
Publicado: (2022) -
Text-Based Recession Probabilities
por: Ferrari Minesso, Massimo, et al.
Publicado: (2022) -
Scene Uyghur Text Detection Based on Fine-Grained Feature Representation
por: Wang, Yiwen, et al.
Publicado: (2022) -
Sentimental text mining based on an additional features method for text classification
por: Cheng, Ching-Hsue, et al.
Publicado: (2019)