Cargando…
Sensitivity of Piezoelectric-Based Smart Interfaces to Structural Damage in Bolted Connections
This study presents a set of experimental and numerical investigations to study the sensitivity of the piezoelectric-based smart interface device to structural damage in a bolted connection. The study aims to identify the proper geometric sizes of smart interfaces for damage detection tasks. First,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749459/ https://www.ncbi.nlm.nih.gov/pubmed/31450813 http://dx.doi.org/10.3390/s19173670 |
_version_ | 1783452283882700800 |
---|---|
author | Huynh, Thanh-Canh Ho, Duc-Duy Dang, Ngoc-Loi Kim, Jeong-Tae |
author_facet | Huynh, Thanh-Canh Ho, Duc-Duy Dang, Ngoc-Loi Kim, Jeong-Tae |
author_sort | Huynh, Thanh-Canh |
collection | PubMed |
description | This study presents a set of experimental and numerical investigations to study the sensitivity of the piezoelectric-based smart interface device to structural damage in a bolted connection. The study aims to identify the proper geometric sizes of smart interfaces for damage detection tasks. First, the fundamentals of the damage monitoring technique via lead zirconate titanate (PZT) interface is briefly described for a bolted connection. Second, a lab-scaled girder connection is selected as the test structure for the experimental investigation. PZT interface prototypes with varying geometric sizes are designed for the test connection. Under the bolt-loosening inflicted in the connection, the impedance responses of the PZT interfaces are analyzed to understand the effect of geometric parameters on the damage sensitivity of the impedance responses. Subsequently, the bolt-loosening detection capabilities of the PZT interfaces are comparatively evaluated for identifying the proper geometric sizes of the devices. Finally, a finite element model of the PZT interface-bolted connection system is established for the numerical investigation. The damage sensitivity of the numerical impedance responses is compared with the experimental results for the verification. |
format | Online Article Text |
id | pubmed-6749459 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-67494592019-09-27 Sensitivity of Piezoelectric-Based Smart Interfaces to Structural Damage in Bolted Connections Huynh, Thanh-Canh Ho, Duc-Duy Dang, Ngoc-Loi Kim, Jeong-Tae Sensors (Basel) Article This study presents a set of experimental and numerical investigations to study the sensitivity of the piezoelectric-based smart interface device to structural damage in a bolted connection. The study aims to identify the proper geometric sizes of smart interfaces for damage detection tasks. First, the fundamentals of the damage monitoring technique via lead zirconate titanate (PZT) interface is briefly described for a bolted connection. Second, a lab-scaled girder connection is selected as the test structure for the experimental investigation. PZT interface prototypes with varying geometric sizes are designed for the test connection. Under the bolt-loosening inflicted in the connection, the impedance responses of the PZT interfaces are analyzed to understand the effect of geometric parameters on the damage sensitivity of the impedance responses. Subsequently, the bolt-loosening detection capabilities of the PZT interfaces are comparatively evaluated for identifying the proper geometric sizes of the devices. Finally, a finite element model of the PZT interface-bolted connection system is established for the numerical investigation. The damage sensitivity of the numerical impedance responses is compared with the experimental results for the verification. MDPI 2019-08-23 /pmc/articles/PMC6749459/ /pubmed/31450813 http://dx.doi.org/10.3390/s19173670 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Huynh, Thanh-Canh Ho, Duc-Duy Dang, Ngoc-Loi Kim, Jeong-Tae Sensitivity of Piezoelectric-Based Smart Interfaces to Structural Damage in Bolted Connections |
title | Sensitivity of Piezoelectric-Based Smart Interfaces to Structural Damage in Bolted Connections |
title_full | Sensitivity of Piezoelectric-Based Smart Interfaces to Structural Damage in Bolted Connections |
title_fullStr | Sensitivity of Piezoelectric-Based Smart Interfaces to Structural Damage in Bolted Connections |
title_full_unstemmed | Sensitivity of Piezoelectric-Based Smart Interfaces to Structural Damage in Bolted Connections |
title_short | Sensitivity of Piezoelectric-Based Smart Interfaces to Structural Damage in Bolted Connections |
title_sort | sensitivity of piezoelectric-based smart interfaces to structural damage in bolted connections |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749459/ https://www.ncbi.nlm.nih.gov/pubmed/31450813 http://dx.doi.org/10.3390/s19173670 |
work_keys_str_mv | AT huynhthanhcanh sensitivityofpiezoelectricbasedsmartinterfacestostructuraldamageinboltedconnections AT hoducduy sensitivityofpiezoelectricbasedsmartinterfacestostructuraldamageinboltedconnections AT dangngocloi sensitivityofpiezoelectricbasedsmartinterfacestostructuraldamageinboltedconnections AT kimjeongtae sensitivityofpiezoelectricbasedsmartinterfacestostructuraldamageinboltedconnections |