Cargando…

Assessment of the Impact of Accelerated Migration Testing for Coated Food Cans Using Food Simulants

In this study, an accelerated migration test on food can coatings into food simulants was investigated. Food simulants covering a wide range of polarity were used to conduct migration tests at 60 °C with storage times ranging from 4 h to 30 days. Epoxy-resins, acrylic–phenolic, polyester, and vinyl...

Descripción completa

Detalles Bibliográficos
Autores principales: Paseiro-Cerrato, Rafael, DeJager, Lowri, Begley, Timothy H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749474/
https://www.ncbi.nlm.nih.gov/pubmed/31466267
http://dx.doi.org/10.3390/molecules24173123
Descripción
Sumario:In this study, an accelerated migration test on food can coatings into food simulants was investigated. Food simulants covering a wide range of polarity were used to conduct migration tests at 60 °C with storage times ranging from 4 h to 30 days. Epoxy-resins, acrylic–phenolic, polyester, and vinyl coatings were exposed to water, 3% acetic acid, 50% ethanol, and Miglyol 812(®). Using liquid chromatography coupled to a variety of detectors (UHPLC-Q-Orbitrap-MS, UFLC-MS/MS, and HPLC-DAD), migration of several monomers and previously identified oligomers, as well as some unidentified migrants, were determined during the experiment. The data from this study was compared to our findings from previous long-term migration studies with storage times ranging from 24 h to 540 days at 40 °C using the same can coating applications. The results illustrate that performing migration experiments for short time periods at 60 °C may mimic migration results that would be obtained at 40 °C after long-term migration tests (up to 1.5 years) from food can coatings into food simulants.