Cargando…
Very Recent Advances in Vinylogous Mukaiyama Aldol Reactions and Their Applications to Synthesis
It is a challenging objective in synthetic organic chemistry to create efficient access to biologically active compounds. In particular, one structural element which is frequently incorporated into the framework of complex natural products is a β-hydroxy ketone. In this context, the aldol reaction i...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749529/ https://www.ncbi.nlm.nih.gov/pubmed/31443344 http://dx.doi.org/10.3390/molecules24173040 |
Sumario: | It is a challenging objective in synthetic organic chemistry to create efficient access to biologically active compounds. In particular, one structural element which is frequently incorporated into the framework of complex natural products is a β-hydroxy ketone. In this context, the aldol reaction is the most important transformation to generate this structural element as it not only creates new C–C bonds but also establishes stereogenic centers. In recent years, a large variety of highly selective methodologies of aldol and aldol-type reactions have been put forward. In this regard, the vinylogous Mukaiyama aldol reaction (VMAR) became a pivotal transformation as it allows the synthesis of larger fragments while incorporating 1,5-relationships and generating two new stereocenters and one double bond simultaneously. This review summarizes and updates methodology-oriented and target-oriented research focused on the various aspects of the vinylogous Mukaiyama aldol (VMA) reaction. This manuscript comprehensively condenses the last four years of research, covering the period 2016–2019. |
---|