Cargando…
Soft Sensing of Silicon Content via Bagging Local Semi-Supervised Models
The silicon content in industrial blast furnaces is difficult to measure directly online. Traditional soft sensors do not efficiently utilize useful information hidden in process variables. In this work, bagging local semi-supervised models (BLSM) for online silicon content prediction are proposed....
Autores principales: | He, Xing, Ji, Jun, Liu, Kaixin, Gao, Zengliang, Liu, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749592/ https://www.ncbi.nlm.nih.gov/pubmed/31484466 http://dx.doi.org/10.3390/s19173814 |
Ejemplares similares
-
Just-in-Time Correntropy Soft Sensor with Noisy Data for Industrial Silicon Content Prediction
por: Chen, Kun, et al.
Publicado: (2017) -
Semi-supervised protein subcellular localization
por: Xu, Qian, et al.
Publicado: (2009) -
Semi-Supervised Maximum Discriminative Local Margin for Gene Selection
por: Li, Zejun, et al.
Publicado: (2018) -
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022) -
Semi-supervised learning /
Publicado: (2010)