Cargando…
Proteomic Analysis Identifies Membrane Proteins Dependent on the ER Membrane Protein Complex
The endoplasmic reticulum (ER) membrane protein complex (EMC) is a key contributor to biogenesis and membrane integration of transmembrane proteins, but our understanding of its mechanisms and the range of EMC-dependent proteins remains incomplete. Here, we carried out an unbiased mass spectrometry...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749609/ https://www.ncbi.nlm.nih.gov/pubmed/31484065 http://dx.doi.org/10.1016/j.celrep.2019.08.006 |
Sumario: | The endoplasmic reticulum (ER) membrane protein complex (EMC) is a key contributor to biogenesis and membrane integration of transmembrane proteins, but our understanding of its mechanisms and the range of EMC-dependent proteins remains incomplete. Here, we carried out an unbiased mass spectrometry (MS)-based quantitative proteomic analysis comparing membrane proteins in EMC-deficient cells to wild-type (WT) cells and identified 36 EMC-dependent membrane proteins and 171 EMC-independent membrane proteins. Of these, six EMC-dependent and six EMC-independent proteins were further independently validated. We found that a common feature among EMC-dependent proteins is that they contain transmembrane domains (TMDs) with polar and/or charged residues. Mutagenesis studies demonstrate that EMC dependency can be converted in cells by removing or introducing polar and/or charged residues within TMDs. Our studies expand the list of validated EMC-dependent and EMC-independent proteins and suggest that the EMC is involved in handling TMDs with residues challenging for membrane integration. |
---|