Cargando…
Inferring Latent Disease-lncRNA Associations by Faster Matrix Completion on a Heterogeneous Network
Current studies have shown that long non-coding RNAs (lncRNAs) play a crucial role in a variety of fundamental biological processes related to complex human diseases. The prediction of latent disease-lncRNA associations can help to understand the pathogenesis of complex human diseases at the level o...
Autores principales: | Li, Wen, Wang, Shulin, Xu, Junlin, Mao, Guo, Tian, Geng, Yang, Jialiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749816/ https://www.ncbi.nlm.nih.gov/pubmed/31572428 http://dx.doi.org/10.3389/fgene.2019.00769 |
Ejemplares similares
-
Inferring Latent Disease-lncRNA Associations by Label-Propagation Algorithm and Random Projection on a Heterogeneous Network
por: Chen, Min, et al.
Publicado: (2022) -
BPLLDA: Predicting lncRNA-Disease Associations Based on Simple Paths With Limited Lengths in a Heterogeneous Network
por: Xiao, Xiaofang, et al.
Publicado: (2018) -
Predicting lncRNA–Protein Interactions by Heterogenous Network Embedding
por: Zhao, Guoqing, et al.
Publicado: (2022) -
Probing lncRNA–Protein Interactions: Data Repositories, Models, and Algorithms
por: Peng, Lihong, et al.
Publicado: (2020) -
Identifying lncRNA–disease association based on GAT multiple-operator aggregation and inductive matrix completion
por: Zhang, Yi, et al.
Publicado: (2022)