Cargando…
Subwavelength Acoustic Valley-Hall Topological Insulators Using Soda Cans Honeycomb Lattices
Topological valley-contrasting physics has attracted great attention in exploring the use of the valley degree of freedom as a promising carrier of information. Recently, this concept has been extended to acoustic systems to obtain nonbackscattering sound propagations. However, previous demonstratio...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750043/ https://www.ncbi.nlm.nih.gov/pubmed/31549068 http://dx.doi.org/10.34133/2019/5385763 |
Sumario: | Topological valley-contrasting physics has attracted great attention in exploring the use of the valley degree of freedom as a promising carrier of information. Recently, this concept has been extended to acoustic systems to obtain nonbackscattering sound propagations. However, previous demonstrations are limited by the cut-off frequency of 2D waveguides and lattice-scale size restrictions since the topological edge states originate from Bragg interference. Here we engineer topologically valley-projected edge states in the form of spoof surface acoustic waves that confine along the surface of a subwavelength honeycomb lattice composed of 330-mL soda cans. The inversion symmetry is broken through injecting a certain amount of water into one of the two cans in each unit cell, which gaps the Dirac cone and ultimately leads to the topological valley-Hall phase transition. Dual-frequency ranges of the valley-projected edge states below the sound line are observed, which originate from the first-order and second-order resonances, respectively. These results have the potential to enable promising routes to design integrated acoustic devices based on valley-contrasting physics. |
---|