Cargando…

Subwavelength Acoustic Valley-Hall Topological Insulators Using Soda Cans Honeycomb Lattices

Topological valley-contrasting physics has attracted great attention in exploring the use of the valley degree of freedom as a promising carrier of information. Recently, this concept has been extended to acoustic systems to obtain nonbackscattering sound propagations. However, previous demonstratio...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Zhiwang, Gu, Ye, Long, Houyou, Cheng, Ying, Liu, Xiaojun, Christensen, Johan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AAAS 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750043/
https://www.ncbi.nlm.nih.gov/pubmed/31549068
http://dx.doi.org/10.34133/2019/5385763
_version_ 1783452391516930048
author Zhang, Zhiwang
Gu, Ye
Long, Houyou
Cheng, Ying
Liu, Xiaojun
Christensen, Johan
author_facet Zhang, Zhiwang
Gu, Ye
Long, Houyou
Cheng, Ying
Liu, Xiaojun
Christensen, Johan
author_sort Zhang, Zhiwang
collection PubMed
description Topological valley-contrasting physics has attracted great attention in exploring the use of the valley degree of freedom as a promising carrier of information. Recently, this concept has been extended to acoustic systems to obtain nonbackscattering sound propagations. However, previous demonstrations are limited by the cut-off frequency of 2D waveguides and lattice-scale size restrictions since the topological edge states originate from Bragg interference. Here we engineer topologically valley-projected edge states in the form of spoof surface acoustic waves that confine along the surface of a subwavelength honeycomb lattice composed of 330-mL soda cans. The inversion symmetry is broken through injecting a certain amount of water into one of the two cans in each unit cell, which gaps the Dirac cone and ultimately leads to the topological valley-Hall phase transition. Dual-frequency ranges of the valley-projected edge states below the sound line are observed, which originate from the first-order and second-order resonances, respectively. These results have the potential to enable promising routes to design integrated acoustic devices based on valley-contrasting physics.
format Online
Article
Text
id pubmed-6750043
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher AAAS
record_format MEDLINE/PubMed
spelling pubmed-67500432019-09-23 Subwavelength Acoustic Valley-Hall Topological Insulators Using Soda Cans Honeycomb Lattices Zhang, Zhiwang Gu, Ye Long, Houyou Cheng, Ying Liu, Xiaojun Christensen, Johan Research (Wash D C) Research Article Topological valley-contrasting physics has attracted great attention in exploring the use of the valley degree of freedom as a promising carrier of information. Recently, this concept has been extended to acoustic systems to obtain nonbackscattering sound propagations. However, previous demonstrations are limited by the cut-off frequency of 2D waveguides and lattice-scale size restrictions since the topological edge states originate from Bragg interference. Here we engineer topologically valley-projected edge states in the form of spoof surface acoustic waves that confine along the surface of a subwavelength honeycomb lattice composed of 330-mL soda cans. The inversion symmetry is broken through injecting a certain amount of water into one of the two cans in each unit cell, which gaps the Dirac cone and ultimately leads to the topological valley-Hall phase transition. Dual-frequency ranges of the valley-projected edge states below the sound line are observed, which originate from the first-order and second-order resonances, respectively. These results have the potential to enable promising routes to design integrated acoustic devices based on valley-contrasting physics. AAAS 2019-08-08 /pmc/articles/PMC6750043/ /pubmed/31549068 http://dx.doi.org/10.34133/2019/5385763 Text en Copyright © 2019 Zhiwang Zhang et al. https://creativecommons.org/licenses/by/4.0/ Exclusive licensee Science and Technology Review Publishing House. Distributed under a Creative Commons Attribution License (CC BY 4.0).
spellingShingle Research Article
Zhang, Zhiwang
Gu, Ye
Long, Houyou
Cheng, Ying
Liu, Xiaojun
Christensen, Johan
Subwavelength Acoustic Valley-Hall Topological Insulators Using Soda Cans Honeycomb Lattices
title Subwavelength Acoustic Valley-Hall Topological Insulators Using Soda Cans Honeycomb Lattices
title_full Subwavelength Acoustic Valley-Hall Topological Insulators Using Soda Cans Honeycomb Lattices
title_fullStr Subwavelength Acoustic Valley-Hall Topological Insulators Using Soda Cans Honeycomb Lattices
title_full_unstemmed Subwavelength Acoustic Valley-Hall Topological Insulators Using Soda Cans Honeycomb Lattices
title_short Subwavelength Acoustic Valley-Hall Topological Insulators Using Soda Cans Honeycomb Lattices
title_sort subwavelength acoustic valley-hall topological insulators using soda cans honeycomb lattices
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750043/
https://www.ncbi.nlm.nih.gov/pubmed/31549068
http://dx.doi.org/10.34133/2019/5385763
work_keys_str_mv AT zhangzhiwang subwavelengthacousticvalleyhalltopologicalinsulatorsusingsodacanshoneycomblattices
AT guye subwavelengthacousticvalleyhalltopologicalinsulatorsusingsodacanshoneycomblattices
AT longhouyou subwavelengthacousticvalleyhalltopologicalinsulatorsusingsodacanshoneycomblattices
AT chengying subwavelengthacousticvalleyhalltopologicalinsulatorsusingsodacanshoneycomblattices
AT liuxiaojun subwavelengthacousticvalleyhalltopologicalinsulatorsusingsodacanshoneycomblattices
AT christensenjohan subwavelengthacousticvalleyhalltopologicalinsulatorsusingsodacanshoneycomblattices