Cargando…

Numerical Solution for the Extrapolation Problem of Analytic Functions

In this work, a numerical solution for the extrapolation problem of a discrete set of n values of an unknown analytic function is developed. The proposed method is based on a novel numerical scheme for the rapid calculation of higher order derivatives, exhibiting high accuracy, with error magnitude...

Descripción completa

Detalles Bibliográficos
Autor principal: Bakas, Nikolaos P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AAAS 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750076/
https://www.ncbi.nlm.nih.gov/pubmed/31549060
http://dx.doi.org/10.34133/2019/3903187
Descripción
Sumario:In this work, a numerical solution for the extrapolation problem of a discrete set of n values of an unknown analytic function is developed. The proposed method is based on a novel numerical scheme for the rapid calculation of higher order derivatives, exhibiting high accuracy, with error magnitude of O(10(−100)) or less. A variety of integrated radial basis functions are utilized for the solution, as well as variable precision arithmetic for the calculations. Multiple alterations in the function's direction, with no curvature or periodicity information specified, are efficiently foreseen. Interestingly, the proposed procedure can be extended in multiple dimensions. The attained extrapolation spans are greater than two times the given domain length. The significance of the approximation errors is comprehensively analyzed and reported, for 5832 test cases.