Cargando…

Pseudospin-1 Physics of Photonic Crystals

We review some recent progress in the exploration of pseudospin-1 physics using dielectric photonic crystals (PCs). We show some physical implications of the PCs exhibiting an accidental degeneracy induced conical dispersion at the Γ point, such as the realization of zero refractive index medium and...

Descripción completa

Detalles Bibliográficos
Autores principales: Fang, A., Zhang, Z. Q., Louie, Steven G., Chan, C. T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AAAS 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750083/
https://www.ncbi.nlm.nih.gov/pubmed/31549055
http://dx.doi.org/10.34133/2019/3054062
_version_ 1783452399083454464
author Fang, A.
Zhang, Z. Q.
Louie, Steven G.
Chan, C. T.
author_facet Fang, A.
Zhang, Z. Q.
Louie, Steven G.
Chan, C. T.
author_sort Fang, A.
collection PubMed
description We review some recent progress in the exploration of pseudospin-1 physics using dielectric photonic crystals (PCs). We show some physical implications of the PCs exhibiting an accidental degeneracy induced conical dispersion at the Γ point, such as the realization of zero refractive index medium and the zero Berry phase of a loop around the nodal point. The photonic states of such PCs near the Dirac-like point can be described by an effective spin-orbit Hamiltonian of pseudospin-1. The wave propagation in the positive, negative, and zero index media can be unified within a framework of pseudospin-1 description. A scale change in PCs results in a rigid band shift of the Dirac-like cone, allowing for the manipulation of waves in pseudospin-1 systems in much the same way as applying a gate voltage in pseudospin-1/2 graphene. The transport of waves in pseudospin-1 systems exhibits many interesting phenomena, including super Klein tunneling, robust supercollimation, and unconventional Anderson localization. The transport properties of pseudospin-1 systems are distinct from their counterparts in pseudospin-1/2 systems, which will also be presented for comparison.
format Online
Article
Text
id pubmed-6750083
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher AAAS
record_format MEDLINE/PubMed
spelling pubmed-67500832019-09-23 Pseudospin-1 Physics of Photonic Crystals Fang, A. Zhang, Z. Q. Louie, Steven G. Chan, C. T. Research (Wash D C) Review Article We review some recent progress in the exploration of pseudospin-1 physics using dielectric photonic crystals (PCs). We show some physical implications of the PCs exhibiting an accidental degeneracy induced conical dispersion at the Γ point, such as the realization of zero refractive index medium and the zero Berry phase of a loop around the nodal point. The photonic states of such PCs near the Dirac-like point can be described by an effective spin-orbit Hamiltonian of pseudospin-1. The wave propagation in the positive, negative, and zero index media can be unified within a framework of pseudospin-1 description. A scale change in PCs results in a rigid band shift of the Dirac-like cone, allowing for the manipulation of waves in pseudospin-1 systems in much the same way as applying a gate voltage in pseudospin-1/2 graphene. The transport of waves in pseudospin-1 systems exhibits many interesting phenomena, including super Klein tunneling, robust supercollimation, and unconventional Anderson localization. The transport properties of pseudospin-1 systems are distinct from their counterparts in pseudospin-1/2 systems, which will also be presented for comparison. AAAS 2019-04-08 /pmc/articles/PMC6750083/ /pubmed/31549055 http://dx.doi.org/10.34133/2019/3054062 Text en Copyright © 2019 A. Fang et al. https://creativecommons.org/licenses/by/4.0/ Exclusive licensee Science and Technology Review Publishing House. Distributed under a Creative Commons Attribution License (CC BY 4.0).
spellingShingle Review Article
Fang, A.
Zhang, Z. Q.
Louie, Steven G.
Chan, C. T.
Pseudospin-1 Physics of Photonic Crystals
title Pseudospin-1 Physics of Photonic Crystals
title_full Pseudospin-1 Physics of Photonic Crystals
title_fullStr Pseudospin-1 Physics of Photonic Crystals
title_full_unstemmed Pseudospin-1 Physics of Photonic Crystals
title_short Pseudospin-1 Physics of Photonic Crystals
title_sort pseudospin-1 physics of photonic crystals
topic Review Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750083/
https://www.ncbi.nlm.nih.gov/pubmed/31549055
http://dx.doi.org/10.34133/2019/3054062
work_keys_str_mv AT fanga pseudospin1physicsofphotoniccrystals
AT zhangzq pseudospin1physicsofphotoniccrystals
AT louiesteveng pseudospin1physicsofphotoniccrystals
AT chanct pseudospin1physicsofphotoniccrystals